An effective transition-metal-free approach for the synthesis of 3-alkynyl-2-oxindoles through a radical-radical coupling process was developed. The reaction was general with respect to 2-oxindoles and iodoalkynes and provided the desired products bearing a quaternary center at C3 in good to excellent yields, making this method synthetically viable and attractive for the synthesis of spiro and fused 2-oxindole derivatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.joc.6b03057 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
University of Bari: Universita degli Studi di Bari Aldo Moro, Dept. of Pharmacy - Drug Sciences, via E. Orabona 4, 70125, Bari, ITALY.
Strained spiro-heterocycles (SSH) have gained significant attention within the medicinal chemistry community as promising (sp3)-rich bioisosteres for their aromatic and non-spirocyclic counterparts. We herein report access to an unprecedented spiro-heterocycle - 1,5-dioxaspiro[2.3]hexane.
View Article and Find Full Text PDFACS Cent Sci
January 2025
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
Multicomponent reactions (MCRs), highly sought-after methods to produce atom-, step-, and energy-economic organic syntheses, have been developed extensively. However, catalytic asymmetric MCRs, especially those involving radical species, remain largely unexplored owing to the difficulty in stereoselectively regulating the extraordinarily high reactivity of open-shell radical species. Herein, we report a conceptually novel catalytic asymmetric three-component radical cascade reaction of readily accessible glycine esters, α-bromo carbonyl compounds and 2-vinylcyclopropyl ketones via synergistic photoredox/Brønsted acid catalysis, in which three sequential C-C (σ/π/σ) bond-forming events occurred through a radical addition/ring-opening/radical-radical coupling protocol, affording an array of valuable enantioenriched unnatural α-amino acid derivatives bearing two contiguous stereogenic centers and an alkene moiety in moderate to good yield with high diastereoselectivity, excellent enantioselectivity and good -dominated geometry under mild reaction conditions.
View Article and Find Full Text PDFOrg Lett
January 2025
College of New Energy, State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), 266580 Qingdao, P. R. China.
To provide fluorinated allylamines, a visible-light photocatalytic C-F/C-H coupling of easily accessible -difluoroalkenes and secondary -alkylanilines was described. The protocol proceeded under mild conditions, with excellent functional group compatibility and a broad scope including complex natural product derivatives, thus providing a green method for the preparation of high-value functionalized monofluoroalkenes. Mechanistic studies elucidated a photoredox catalyzed radical-radical coupling pathway.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
Radical coupling reactions are generally known to have a low selectivity due to the high reactivity of radicals. In this study, high regio and substrate selectivity was discovered in the dimerization of triarylimidazolyl radicals (), a versatile photochromic reaction. When two different radicals, 2-(4-cyanophenyl)-4,5-diphenyl-1-imidazolyl radical () and 2-(4-methoxyphenyl)-4,5-diphenyl-1-imidazolyl radical (), were simultaneously generated in situ, a hexaarylbiimidazole, formed by selective coupling at the nitrogen atom at position 1 of and the carbon atom at position 2 of , was isolated with high selectivity as the main product among 24 possible radical dimer hexaarylbiimidazole derivatives.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
The State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen, Fujian 361005, China.
An energy decomposition analysis method based on the constrained unrestricted mean-field (CUHF) theory, called GKS-EDA(CU), is presented for intermolecular interactions involving radicals. This method is able to take into account the spin contamination in both open-shell singlet states and high-spin states. By using GKS-EDA(CU), the total interaction energy can be divided into the terms of electrostatic, exchange-repulsion, polarization, and correlation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!