Analyzing Amyloid Beta Aggregates with a Combinatorial Fluorescent Molecular Sensor.

J Am Chem Soc

Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 7610001, Israel.

Published: February 2017

Different amyloid beta (Aβ) aggregates can be discriminated by a combinatorial fluorescent molecular sensor. The unique optical fingerprints generated by the unimolecular analytical device provide a simple means to differentiate among aggregates generated from different alloforms or through distinct pathways. The sensor has also been used to track dynamic changes that occur in Aβ aggregation states, which result from the formation of low molecular weight oligomers, high molecular weight oligomers, protofibrils, and fibrils.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b10809DOI Listing

Publication Analysis

Top Keywords

amyloid beta
8
combinatorial fluorescent
8
fluorescent molecular
8
molecular sensor
8
molecular weight
8
weight oligomers
8
analyzing amyloid
4
beta aggregates
4
aggregates combinatorial
4
molecular
4

Similar Publications

Peptide-based amyloid-beta aggregation inhibitors.

RSC Med Chem

December 2024

Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research Sector 67, S. A. S. Nagar Punjab 160062 India

Aberrant protein misfolding and accumulation is considered to be a major pathological pillar of neurodegenerative disorders, including Alzheimer's and Parkinson's diseases. Aggregation of amyloid-β (Aβ) peptide leads to the formation of toxic amyloid fibrils and is associated with cognitive dysfunction and memory loss in Alzheimer's disease (AD). Designing molecules that inhibit amyloid aggregation seems to be a rational approach to AD drug development.

View Article and Find Full Text PDF

Although DNA methyltransferase 1 (DNMT1) and RNA editor ADAR triplications exist in Down syndrome (DS), their specific roles remain unclear. DNMT methylates DNA, yielding S-adenosine homocysteine (SAH), subsequently converted to homocysteine (Hcy) and adenosine by S-adenosine homocysteine (Hcy) hydrolase (SAHH). ADAR converts adenosine to inosine and uric acid.

View Article and Find Full Text PDF

Recent advancements in the understanding of the alterations in mitochondrial biogenesis in Alzheimer's disease.

Mol Biol Rep

January 2025

Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.

Alzheimer's disease (AD) is a common neurodegenerative disease characterized by progressive memory loss and cognitive decline. The processes underlying the pathophysiology of AD are still not fully understood despite a great deal of research. Since mitochondrial dysfunction affects cellular energy metabolism, oxidative stress, and neuronal survival, it is becoming increasingly clear that it plays a major role in the development of AD.

View Article and Find Full Text PDF

The adenosine triphosphate-binding cassette transporter A7 (ABCA7) gene is ranked as one of the top susceptibility loci for Alzheimer's disease (AD). While ABCA7 mediates lipid transport across cellular membranes, ABCA7 loss of function has been shown to exacerbate amyloid-β (Aβ) pathology and compromise microglial function. Our family-based study uncovered an extremely rare ABCA7 p.

View Article and Find Full Text PDF

Amyloid capture and aggregation inhibition by human serum albumin.

Int J Biol Macromol

January 2025

Departamento de Química Física, Facultade de Ciencias, Campus Terra, Universidade de Santiago de Compostela, 27002 Lugo, Spain. Electronic address:

Alzheimer's disease (AD) is a prevalent neurodegenerative disorder characterized by amyloid-beta (Aβ) aggregation, primarily involving the peptides Aβ40 and Aβ42. Human serum albumin (HSA) has emerged as a potential therapeutic agent due to its ability to bind Aβ, inhibit aggregation, and promote disaggregation. This study quantitatively examined the interactions of HSA with both monomeric and aggregated forms of Aβ40 and Aβ42 using fluorescence techniques, including bulk steady-state fluorescence, fluorescence anisotropy, time-resolved fluorescence, and Fluorescence Correlation Spectroscopy (FCS).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!