Analyte-Responsive Hydrogels: Intelligent Materials for Biosensing and Drug Delivery.

Acc Chem Res

Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, C0800, The University of Texas at Austin, Austin, Texas 78712, United States.

Published: February 2017

Nature has mastered the art of molecular recognition. For example, using synergistic non-covalent interactions, proteins can distinguish between molecules and bind a partner with incredible affinity and specificity. Scientists have developed, and continue to develop, techniques to investigate and better understand molecular recognition. As a consequence, analyte-responsive hydrogels that mimic these recognitive processes have emerged as a class of intelligent materials. These materials are unique not only in the type of analyte to which they respond but also in how molecular recognition is achieved and how the hydrogel responds to the analyte. Traditional intelligent hydrogels can respond to environmental cues such as pH, temperature, and ionic strength. The functional monomers used to make these hydrogels can be varied to achieve responsive behavior. For analyte-responsive hydrogels, molecular recognition can also be achieved by incorporating biomolecules with inherent molecular recognition properties (e.g., nucleic acids, peptides, enzymes, etc.) into the polymer network. Furthermore, in addition to typical swelling/syneresis responses, these materials exhibit unique responsive behaviors, such as gel assembly or disassembly, upon interaction with the target analyte. With the diverse tools available for molecular recognition and the ability to generate unique responsive behaviors, analyte-responsive hydrogels have found great utility in a wide range of applications. In this Account, we discuss strategies for making four different classes of analyte-responsive hydrogels, specifically, non-imprinted, molecularly imprinted, biomolecule-containing, and enzymatically responsive hydrogels. Then we explore how these materials have been incorporated into sensors and drug delivery systems, highlighting examples that demonstrate the versatility of these materials. For example, in addition to the molecular recognition properties of analyte-responsive hydrogels, the physicochemical changes that are induced upon analyte binding can be exploited to generate a detectable signal for sensing applications. As research in this area has grown, a number of creative approaches for improving the selectivity and sensitivity (i.e., detection limit) of these sensors have emerged. For applications in drug delivery systems, therapeutic release can be triggered by competitive molecular interactions or physicochemical changes in the network. Additionally, including degradable units within the network can enable sustained and responsive therapeutic release. Several exciting examples exploiting the analyte-responsive behavior of hydrogels for the treatment of cancer, diabetes, and irritable bowel syndrome are discussed in detail. We expect that creative and combinatorial approaches used in the design of analyte-responsive hydrogels will continue to yield materials with great potential in the fields of sensing and drug delivery.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6130197PMC
http://dx.doi.org/10.1021/acs.accounts.6b00533DOI Listing

Publication Analysis

Top Keywords

analyte-responsive hydrogels
28
molecular recognition
28
drug delivery
16
hydrogels
10
analyte-responsive
8
intelligent materials
8
molecular
8
recognition achieved
8
recognition properties
8
unique responsive
8

Similar Publications

Smartphone ubiquity has led to rapid developments in portable diagnostics. While successful, such platforms are predominantly optics-based, using the smartphone camera as the sensing interface. By contrast, magnetics-based modalities exploiting the smartphone compass (magnetometer) remain unexplored, despite inherent advantages in optically opaque, scattering or auto-fluorescing samples.

View Article and Find Full Text PDF

Imprinted Hydrogel Nanoparticles for Protein Biosensing: A Review.

ACS Sens

August 2023

CIQUP/IMS, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre 687, s/n, Porto 4169-007, Portugal.

Over the past decade, molecular imprinting (MI) technology has made tremendous progress, and the advancements in nanotechnology have been the major driving force behind the improvement of MI technology. The preparation of nanoscale imprinted materials, i.e.

View Article and Find Full Text PDF

Hydrogel gratings with patterned analyte responsive dyes for spectroscopic sensing.

RSC Adv

December 2021

Process Instruments (UK) Ltd Turf Street Burnley BB11 3BP UK

This is an unprecedented report of hydrogel gratings with an analyte responsive dye immobilised in alternating strips where the patterned dye is its own dispersive element to perform spectroscopy. At each wavelength, the diffraction efficiency of hydrogel gratings is a function of dye absorbance, which in turn is dependent on the concentration of analytes in samples. Thus, changes in intensity of diffracted light of hydrogel gratings were measured for sensing of analytes.

View Article and Find Full Text PDF

Stimuli-sensitive cross-linked hydrogels as drug delivery systems: Impact of the drug on the responsiveness.

Int J Pharm

April 2020

Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.

Responsiveness of drug delivery systems (DDS) against internal and external stimuli attracts wide interest as a mechanism that can provide both site-specific release at the target place and feedback regulated release rate. Biological environment is quite complex and the effects that the intricate medium may have on the effectiveness of the stimulus have received certain attention. Differently, the impact that the drug loaded may have itself on the responsiveness of the DDS has been underestimated.

View Article and Find Full Text PDF

We present the design and fabrication of pH responsive ratiometric dual component sensor systems based on multicolor emissive upconversion nanoparticles (UCNP) and pH sensitive BODIPY dyes with tunable p K values embedded into a polymeric hydrogel matrix. The use of NIR excitable NaYF:Yb,Tm UCNPs enables background free read-out. Furthermore, the spectrally matching optical properties of the UCNPs and the dyes allow the UCNPs to serve as excitation light source for the analyte-responsive BODIPY as well as intrinsic reference.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!