[Cp*RuCl] (1) has previously been shown to be the precatalyst of choice for stereochemically unorthodox trans-hydrometalations of internal alkynes. Experimental and computational data now prove that the alkyne primarily acts as a four-electron donor ligand to the catalytically active metal fragment [Cp*RuCl] but switches to adopt a two-electron donor character once the reagent RMH (M = Si, Ge, Sn) enters the ligand sphere. In the stereodetermining step the resulting loaded complex evolves via an inner-sphere mechanism into a ruthenacyclopropene which swiftly transforms into the product. In accord with the low computed barriers, spectral and preparative data show that the reaction is not only possible but sometimes even favored at low temperatures. Importantly, such trans-hydrometalations are distinguished by excellent levels of regioselectivity when unsymmetrical alkynes are used that carry an -OH or -NHR group in vicinity of the triple bond. A nascent hydrogen bridge between the protic substituent and the polarized [Ru-Cl] unit imposes directionality onto the ligand sphere of the relevant intermediates, which ultimately accounts for the selective delivery of the RM- group to the acetylene C-atom proximal to the steering substituent. The interligand hydrogen bonding also allows site-selectivity to be harnessed in reactions of polyunsaturated compounds, since propargylic substrates bind more tightly than ordinary alkynes; even the electronically coupled triple bonds of conjugated 1,3-diynes can be faithfully discriminated as long as one of them is propargylic. Finally, properly positioned protic sites lead to a substantially increased substrate scope in that they render even 1,3-enynes, arylalkynes, and electron-rich alkynylated heterocycles amenable to trans-hydrometalation which are otherwise catalyst poisons.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.6b12517DOI Listing

Publication Analysis

Top Keywords

ligand sphere
8
ruthenium-catalyzed alkyne
4
alkyne trans-hydrometalation
4
trans-hydrometalation mechanistic
4
mechanistic insights
4
insights preparative
4
preparative implications
4
implications [cp*rucl]
4
[cp*rucl] precatalyst
4
precatalyst choice
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!