The deposition of nanoliter and subnanoliter volumes is important in chemical and biochemical droplet-based microfluidic systems. There are several techniques that have been established for the deposition/generation of small volumes including the use of surfaces with patterned differences in wettability. Many such methods require complex and time-consuming lithographic techniques. Here, we present a facile method for the fabrication of superhydrophobic surfaces with patterned hydrophilic regions by laser micromachining. A comprehensive study of fabrication parameters (laser machining speed, laser power, and patch size) on the material, patch wettability, and droplet volume is presented. Patch sizes as small as 100 μm diameter and as large as 1500 μm diameter were investigated, and volumes as low as 400 pL were observed. As an example application of such patterned materials and the deposition of small volumes, halide salts were preconcentrated on the hydrophilic patches, and their fluorescence quenching constants were rapidly calculated using a 3D-printed device coupled to a fluorescence spectrometer.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.6b16363DOI Listing

Publication Analysis

Top Keywords

laser micromachining
8
small volumes
8
surfaces patterned
8
μm diameter
8
fabrication patterned
4
patterned superhydrophobic/hydrophilic
4
superhydrophobic/hydrophilic substrates
4
laser
4
substrates laser
4
small
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!