Bone tissue healing is a dynamic process that is initiated by the recruitment of osteoprogenitor cells followed by their migration, proliferation, differentiation, and development of a mineralizing extracellular matrix. The work aims to manufacture a functionalized porous membrane that stimulates early events in bone healing for initiating a regenerative cascade. Layer-by-layer (LbL) assembly is proposed to modify the surface of osteoconductive electrospun meshes, based on poly(lactic-co-glycolic acid) and nanohydroxyapatite, by using poly(allylamine hydrochloride) and poly(sodium 4-styrenesulfonate) as polyelectrolytes. Molecular cues are incorporated by grafting peptide fragments into the discrete nanolayers. KRSR (lysine-arginine-serine-arginine) sequence is grafted to enhance cell adhesion and proliferation, NSPVNSKIPKACCVPTELSAI to guide bone marrow mesenchymal stem cells differentiation in osteoblasts, and FHRRIKA (phenylalanine-histidine-arginine-arginine-isoleucine-lysine-alanine) to improve mineralization matrix formation. Scanning electron microscopy, infrared spectroscopy, and X-ray photoelectron spectroscopy demonstrate the successful surface functionalization. Furthermore, the peptide incorporation enhances cellular processes, with good viability and significant increase of alkaline phosphatase activity, osteopontin, and osteocalcin. The functionalized membrane induces a favorable in vivo response after implantation for four weeks in nonhealing rat calvarial defect model. It is concluded that the multilayer nanoencapsulation of biofunctional peptides using LbL approach has significant potential as innovative manufacturing technique to improve bone regeneration in orthopedic and craniofacial medical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adhm.201601182DOI Listing

Publication Analysis

Top Keywords

biofunctional peptides
8
bone tissue
8
bone
5
multilayer nanoscale
4
nanoscale encapsulation
4
encapsulation biofunctional
4
peptides enhance
4
enhance bone
4
tissue regeneration
4
regeneration vivo
4

Similar Publications

Comparison of Plasma p-tau217 and [F]FDG-PET for Identifying Alzheimer Disease in People With Early-Onset or Atypical Dementia.

Neurology

January 2025

Translational Neuroimaging Laboratory, The McGill University Research Centre for Studies in Aging, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada.

Background And Objectives: To compare the diagnostic performance of an immunoassay for plasma concentrations of phosphorylated tau (p-tau) 217 with visual assessments of fluorine-18 fluorodeoxyglucose [F]FDG-PET in individuals who meet appropriate use criteria for Alzheimer dementia (AD) biomarker assessments.

Methods: We performed a retrospective analysis of individuals with early-onset (age <65 years at onset) and/or atypical dementia (features other than memory at onset), who were evaluated at a tertiary care memory clinic. All participants underwent measurements of CSF biomarkers (Aβ42, p-tau181, and total tau levels), as well as [F]FDG-PET scans, amyloid-PET scans, and plasma p-tau217 quantifications.

View Article and Find Full Text PDF

Assembly of Recombinant Proteins into β-Sheet Fibrillating Peptide-Driven Supramolecular Hydrogels for Enhanced Diabetic Wound Healing.

ACS Biomater Sci Eng

December 2024

Inner Mongolia Key Laboratory for Molecular Regulation of the Cell, School of Life Sciences, Inner Mongolia University, Hohhot 010020, PR China.

Supramolecular hydrogels offer a noncovalent binding platform that preserves the bioactivity of structural molecules while enhancing their stability, particularly in the context of diabetic wound repair. In this study, we developed protein-peptide-based supramolecular hydrogels by assembling β-sheet fibrillizing peptides (designated Q11) with β-tail fused recombinant proteins. The Q11 peptides have the ability to drive the gradated assembly of N- or C-terminal β-sheet structure (β-tail) fused recombinant proteins.

View Article and Find Full Text PDF

Frontal neurodegeneration associated with Frontal Assessment Battery in early Alzheimer's disease.

J Neurol Sci

December 2024

Department of Psychiatry, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.

Background: The Frontal Assessment Battery (FAB) is widely used to assess executive dysfunction in patients with amnestic mild cognitive impairments due to Alzheimer's disease (aMCI-AD), but its neurobiological meaning is unclear. To elucidate this, we examined the relationship between the FAB score and three key imaging biomarkers: gray matter volume, amyloid-beta (Aβ) deposition, and glucose metabolism.

Methods: Twenty Aβ- and tau-positive aMCI-AD patients and age-matched controls underwent structural magnetic resonance imaging and positron emission tomography with [C]PiB and [F]FDG.

View Article and Find Full Text PDF

Hydrogel-to-Nanoparticle Transition with Immune Cell Activation Controlled by Dual Supramolecular Interactions.

ACS Appl Mater Interfaces

December 2024

The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.

Biomolecules may undergo dynamic transitions between different aggregation states in order to adapt to the microenvironment. As a result, appropriate biofunctions can be performed only under certain states. This feature inspires exploration for constructing and regulating environmentally adaptive materials through supramolecular ways.

View Article and Find Full Text PDF

Pro-resolving lipid mediators and therapeutic innovations in resolution of inflammation.

Pharmacol Ther

January 2025

William Harvey Research Institute, Queen Mary University of London, London, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom.

This review summarizes findings presented at the 19th World Congress of Basic & Clinical Pharmacology 2023 (Glasgow, Scotland, July 3rd to 7th, 2023) from 8 speakers in the field of resolution of inflammation, resolution pharmacology and resolution biology. It is now accepted that the acute inflammatory response is protective to defend the host against infection or tissue injury. Acute inflammation is self-limited and programmed to be limited in space and time: this is achieved through endogenous resolution processes that ensure return to homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!