AI Article Synopsis

Article Abstract

Objectives: The objective of this study was to assess the influence of an iterative CT reconstruction algorithm (IA), newly available for CT-fluoroscopy (CTF), on image noise, readers' confidence and effective dose compared to filtered back projection (FBP).

Methods: Data from 165 patients (FBP/IA = 82/74) with CTF in the thorax, abdomen and pelvis were included. Noise was analysed in a large-diameter vessel. The impact of reconstruction and variables (e.g. X-ray tube current I) influencing noise and effective dose were analysed by ANOVA and a pairwise t-test with Bonferroni-Holm correction. Noise and readers' confidence were evaluated by three readers.

Results: Noise was significantly influenced by reconstruction, I, body region and circumference (all p ≤ 0.0002). IA reduced the noise significantly compared to FBP (p = 0.02). The effect varied for body regions and circumferences (p ≤ 0.001). The effective dose was influenced by the reconstruction, body region, interventional procedure and I (all p ≤ 0.02). The inter-rater reliability for noise and readers' confidence was good (W ≥ 0.75, p < 0.0001). Noise and readers' confidence were significantly better in AIDR-3D compared to FBP (p ≤ 0.03). Generally, IA yielded a significant reduction of the median effective dose.

Conclusion: The CTF reconstruction by IA showed a significant reduction in noise and effective dose while readers' confidence increased.

Key Points: • CTF is performed for image guidance in interventional radiology. • Patient exposure was estimated from DLP documented by the CT. • Iterative CT reconstruction is appropriate to reduce image noise in CTF. • Using iterative CT reconstruction, the effective dose was significantly reduced in abdominal interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00330-017-4754-7DOI Listing

Publication Analysis

Top Keywords

noise readers'
12
readers' confidence
12
effective dose
12
influenced reconstruction
8
reconstruction body
8
body region
8
noise
7
reconstruction
5
improvement image
4
image quality
4

Similar Publications

Quantitative and Visual Benefits of Data-Driven Motion Correction on Oncologic PET/CT: A Prospective Cross-sectional Study.

Acad Radiol

January 2025

Department of Radiology, Washington University School of Medicine, 510 S. Kingshighway Blvd, St. Louis, MO 63110 (S.I., M.A.T., M.I., C.S., R.L., A.H., R.L.W., T.J.F.). Electronic address:

Rationale And Objective: Conventional positron emission tomography (PET) respiratory gating utilizes a fraction of acquired PET counts (i.e., optimal gate [OG]), whereas elastic motion correction with deblurring (EMCD) utilizes all PET counts to reconstruct motion-corrected images without increasing image noise.

View Article and Find Full Text PDF

: This study aims to evaluate the impact of various weighting factors (WFs) on the quality of weighted average (WA) dual-energy computed tomography (DECT) non-contrast brain images and to determine the optimal WF value. Because they simulate standard CT images, 0.4-WA reconstructions are routinely used.

View Article and Find Full Text PDF

Rationale And Objectives: The aim of this study was to compare the image quality of a deep learning (DL)-accelerated volumetric interpolated breath-hold examination (VIBE) sequence with a standard (ST) VIBE sequence in assessing the uterus.

Materials And Methods: Between April and December 2023, a total of 61 female patients (aged 41 ± 14 years) who were referred for an magnetic resonance imaging (MRI) of the pelvis were included in this prospective study, after providing informed consent. All examinations were performed with a 1.

View Article and Find Full Text PDF

Background: The bolus tracking technique has been used for decades, yet still faces the challenging task of determining the optimal scanning time for individuals. Our study aimed to assess the feasibility of a novel bolus tracking method with a personalized post-trigger delay (PTD) to optimize scanning time and achieve optimized enhancement and contrast homogeneity in aortic computed tomography angiography (CTA).

Methods: Participants undergoing aortic CTA with bolus tracking were prospectively assigned to two different groups: Group A with a fixed 6-second PTD and Group B with a personalized PTD.

View Article and Find Full Text PDF

Motion-Compensated Multishot Pancreatic Diffusion-Weighted Imaging With Deep Learning-Based Denoising.

Invest Radiol

January 2025

From the Department of Radiology, Stanford University, Stanford, CA (K.W., M.J.M., A.M.L., A.B.S., A.J.H., D.B.E., R.L.B.); Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA (K.W.); GE HealthCare, Houston, TX (X.W.); GE HealthCare, Boston, MA (A.G.); and GE HealthCare, Menlo Park, CA (P.L.).

Objectives: Pancreatic diffusion-weighted imaging (DWI) has numerous clinical applications, but conventional single-shot methods suffer from off resonance-induced artifacts like distortion and blurring while cardiovascular motion-induced phase inconsistency leads to quantitative errors and signal loss, limiting its utility. Multishot DWI (msDWI) offers reduced image distortion and blurring relative to single-shot methods but increases sensitivity to motion artifacts. Motion-compensated diffusion-encoding gradients (MCGs) reduce motion artifacts and could improve motion robustness of msDWI but come with the cost of extended echo time, further reducing signal.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!