Stability, and optical and electronic properties of ultrathin h-BNC.

Phys Chem Chem Phys

Departamento de Física, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS, Brazil.

Published: February 2017

Spin polarized density functional theory has been used to study the stability, and electronic and optical properties when BN nanodomains are embedded in graphene and carbon patches are embedded in a single layer of h-BN forming h-BNC nanosystems. Our results show that graphene doped with BN nanodomains exhibits a non-zero gap, which depends on the nanodomain's shape and width. For h-BN with C domains we observe that we can tune the h-BN gap into the visible region, making the h-BNC a promising material for catalysis using solar energy. Furthermore, n-type and p-type semiconductors can be obtained by controlling the bond (C-N or C-B) in the border of the domain. These findings open the possibility to use h-BNC nanosheets for future applications in photocatalysis and optoelectronic devices.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c6cp08730bDOI Listing

Publication Analysis

Top Keywords

stability optical
4
optical electronic
4
electronic properties
4
properties ultrathin
4
h-bnc
4
ultrathin h-bnc
4
h-bnc spin
4
spin polarized
4
polarized density
4
density functional
4

Similar Publications

Background: To establish an objective method for assessing plus disease severity in retinopathy of prematurity.

Methods: Six images of plus diseases that were color-coded according to severity and published in the International Classification of Retinopathy of Prematurity, Third Edition (ICROP3) were analyzed. These images were individually processed, and the best-fit curve and vessel course in zone I were obtained using ImageJ software.

View Article and Find Full Text PDF

Advances in lacrimal gland organoid development: Techniques and therapeutic applications.

Biomed Pharmacother

January 2025

Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea. Electronic address:

The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage.

View Article and Find Full Text PDF

Gold nanoparticles are widely used in biomedical applications due to their unique properties. However, traditional synthesis methods generate contaminants that cause cytotoxicity and compromise the biocompatibility of the nanomaterials. Therefore, green synthesis methods are essential to produce pure and biocompatible nanoparticles, ensuring their effectiveness in biomedical applications.

View Article and Find Full Text PDF

Functional gold nanoparticles have emerged as a cornerstone in targeted drug delivery, imaging, and biosensing. Their stability, distribution, and overall performance in biological systems are largely determined by their interactions with molecules in biological fluids as well as the biomolecular layers they acquire in complex environments. However, real-time tracking of how biomolecules attach to colloidal nanoparticles, a critical aspect for optimizing nanoparticle function, has proven to be experimentally challenging.

View Article and Find Full Text PDF

Context: This study systematically investigated the effects of single S-atom vacancy defects and composite defects (vacancy combined with doping) on the properties of MoS using density functional theory. The results revealed that N-doped S-vacancy MoS has the smallest composite defect formation energy, indicating its highest stability. Doping maintained the direct band gap characteristic, with shifts in the valence band top.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!