Specific chemotherapy using benznidazole (BNZ) for Chagas disease during the chronic stage is controversial due to its limited efficacy and toxic effects. Although BNZ has been used to treat Chagas disease since the 1970s, few studies about the biodistribution of this drug exist. In this study, BNZ tissue biodistribution in a murine model and its pharmacokinetic profile in plasma were monitored. A bioanalytical high-performance liquid chromatography method with a UV detector (HPLC-UV) was developed and validated according to the European Medicines Agency for quantification of BNZ in organs and plasma samples prepared by liquid-liquid extraction using ethyl acetate. The developed method was linear in the BNZ concentration, which ranged from 0.1 to 100.0 μg/ml for plasma, spleen, brain, colon, heart, lung, and kidney and from 0.2 to 100.0 μg/ml for liver. Validation assays demonstrated good stability for BNZ under all conditions evaluated. Pharmacokinetic parameters confirmed rapid, but low, absorption of BNZ after oral administration. Biodistribution assays demonstrated different maximum concentrations in organs and similar times to maximum concentration and mean residence times, with means of 40 min and 2.5 h, respectively. Therefore, the biodistribution of BNZ is extensive, reaching organs such as the heart and colon, which are the most relevant organs affected by infection, and also the spleen, brain, liver, lungs, and kidneys. Simultaneous analyses of tissues and plasma indicated high BNZ metabolism in the liver. Our results suggest that low bioavailability, instead of inadequate biodistribution, could be responsible for therapeutic failure during the chronic phase of Chagas disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365712 | PMC |
http://dx.doi.org/10.1128/AAC.02410-16 | DOI Listing |
Trans R Soc Trop Med Hyg
January 2025
Department of Cardiology and Cardiovascular Surgery, Faculdade de Medicina de São José do Rio Preto, SP, 15090-000, Brazil.
Background: Immunological similarities led us to explore potential interactions between Chagas heart disease (CHD) and coronavirus disease 2019 (COVID-19). We evaluated CHD's impact on the short- and long-term clinical courses of COVID-19 patients.
Methods: The CHD group comprised consecutive hospitalized patients (March 2020-March 2022), while the controls were selected through genetic matching based on COVID complications predictors.
Front Microbiol
December 2024
National Center for Structural Biology and Bioimaging, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
Neurosci Biobehav Rev
January 2025
Laboratory of Cognitive Neurophysiology (LabNeuro), Institute of Biological Sciences, Department of Biophysics and Physiology, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil; Post-Graduation Program in Rehabilitation Sciences and Physical-Functional Performance, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil. Electronic address:
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder mainly defined by impairments in communication and socialization. Although motor symptoms are not typically considered central to the disease, their high frequency and early onset have been recurrently reported in the literature. Therefore, this scoping review provides a broad description of these motor impairments across all ages, as well as a discussion of their relevance and relation to other clinical aspects of ASD.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil. Electronic address:
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.
View Article and Find Full Text PDFSci Rep
January 2025
Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brasil.
This work investigates the anti-trypanosomal activities of ten thiohydantoin derivatives against the parasite Trypanosoma cruzi. Compounds with aliphatic chains (THD1, THD3, and THD5) exhibited the most promising IC against the epimastigote form of T. cruzi.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!