Kawasaki disease (KD) is a paediatric vasculitis whose pathogenesis remains unclear. Based on experimental studies using a mouse model for KD, we report here that proline-rich protein tyrosine kinase 2 (Pyk2) plays a critical role in the onset of KD-like murine vasculitis. The mouse model for KD was prepared by administrating a Candida albicans water-soluble fraction (CAWS). Unlike CAWS-treated WT mice, CAWS-treated Pyk2-Knockout (Pyk2-KO) mice did not develop apparent vasculitis. A sustained increase in MIG/CXCL9 and IP-10/CXCL10, both of which have potent angiostatic activity, was observed in CAWS-treated Pyk2-KO mice. CAWS-induced activation of STAT3, which negatively regulates the expression of these chemokines, was also attenuated in macrophages derived from Pyk2-KO mice. The present study suggests that defects in Pyk2 suppress KD-like experimental vasculitis, presumably through CXCL9- and CXCL10-dependent interference with neo-angiogenesis. Since Pyk2-KO mice show no life-threatening phenotype, Pyk2 may be a promising therapeutic molecular target for KD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clim.2017.01.013DOI Listing

Publication Analysis

Top Keywords

pyk2-ko mice
16
proline-rich protein
8
protein tyrosine
8
tyrosine kinase
8
kinase pyk2
8
kawasaki disease
8
mouse model
8
mice
5
non-receptor type
4
type proline-rich
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!