The aim of the present study was to evaluate whether repeated ovum pick-up (OPU) procedures may affect the efficiency of OPU programs for in vitro embryo production (IVEP) in Bos indicus (Nelore) donors. In addition, the repeatability (r) efficiency of IVEP was also assessed. Data available were from 432 OPU-IVEP sessions that were performed at random stages of the estrous cycle in 36 cycling, nonlactating Nelore donors. Semen from three Nelore bulls was used for the IVF. Donors were submitted to 12 consecutive OPU procedures, with an interval of approximately 30 days between sessions. Data were analyzed as repeated measures using the GLIMMIX procedure of SAS 9.3. Cows yielding ≥15 COCs were defined as "high" COCs and cows with less than 15 COCs were defined as "low" COCs donors. The number of COCs retrieved decreased over time in donors classified with high COCs and remained fairly steady in cows with low COCs at the beginning of the program (P = 0.02). Moreover, the number of COCs retrieved (P < 0.0001), and number of blastocysts produced per OPU (P = 0.001) was greater for the high COCs donors compared with the low COCs category, and these results were consistent across OPU sessions. Interestingly, there was no effect of COCs category on the rate of blastocyst development (P = 0.83). In addition, number of blastocysts produced were not affected by repeated OPU (P = 0.37) and interactions between time and COC category (P = 0.72). Similarly, blastocyst rate was not affected by repeated OPU (P = 0.21) and interactions between time and COC category (P = 0.58). Despite of COC category of the donor cows, repeatability was high for the number of COCs retrieved (r = 0.81), number of blastocysts produced per OPU (r = 0.79), and blastocyst rate (0.69). In conclusion, overall numbers of COCs decreased over time in donors classified as having high COCs. However, cumulative amounts of produced blastocysts were greater in donors with high COCs. More importantly, high repeatability was observed in terms of IVEP efficiency. Therefore, IVEP programs can be significantly improved with more aggressive selection toward donors with greater numbers of COCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.theriogenology.2016.11.002 | DOI Listing |
Sci Rep
January 2025
Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G2P5, Canada.
Animals (Basel)
January 2025
Key Laboratory of Animal Genetics and Breeding on Tibetan Plateau, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
Yaks are a rare and unique animal species inhabiting the Qinghai-Tibet Plateau; they are renowned for their remarkable ability to thrive in harsh environments. Milk-derived exosomes, tiny vesicles containing various biological molecules, play crucial roles in numerous pathological and physiological processes, including cell growth, development, and immune regulation. This study delved into the microRNA expression profiles of yak milk-derived exosomes collected from both high- and low-altitude populations using small RNA sequencing.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
The genetic improvement of beef cattle breeds is crucial for the advancement of the beef cattle industry. Whole-genome resequencing technology has been widely applied in genetic breeding as well as research on selection signatures in beef cattle. In this study, 20× whole-genome resequencing was performed on 282 Angus cattle from the Ningxia region, and a high-quality dataset encompassing extensive genomic variations across the entire genome was constructed.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Department of Agricultural Sciences, Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, P.O. Box 85084, Christchurch 7647, New Zealand.
The societal pressure on intensive pastoral dairying demands the search for strategies to reduce the amount of N flowing through and excreted by dairy cows. One of the strategies that is being currently explored focuses on the animal as a solution, as there are differences in N metabolism between cows even within the same herd. This work was conducted to explore such an approach in A1PF herds in New Zealand and the possibility of identifying A1PF cows that are divergent for milk urea nitrogen (MUN) concentration through phenotyping as a potential viable strategy to reduce N leaching and emissions from temperate dairy systems.
View Article and Find Full Text PDFAnimals (Basel)
December 2024
Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan.
In intensive beef production systems, social dominance relationships among cattle and human-cattle relationships constantly affect cattle welfare. However, these factors have not been investigated to assess their long-term effects on cattle welfare. In this study, the relations of hair cortisol concentrations of group-housed pregnant cows with their social rank and avoidance distance when approached by humans were analysed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!