Bayesian population structure analysis reveals presence of phylogeographically specific sublineages within previously ill-defined T group of Mycobacterium tuberculosis.

PLoS One

WHO Supranational TB Reference Laboratory, Tuberculosis and Mycobacteria Unit, Institut Pasteur de la Guadeloupe, Morne Jolivière Abymes, Guadeloupe, France.

Published: August 2017

Mycobacterium tuberculosis genetic structure, and evolutionary history have been studied for years by several genotyping approaches, but delineation of a few sublineages remains controversial and needs better characterization. This is particularly the case of T group within lineage 4 (L4) which was first described using spoligotyping to pool together a number of strains with ill-defined signatures. Although T strains were not traditionally considered as a real phylogenetic group, they did contain a few phylogenetically meaningful sublineages as shown using SNPs. We therefore decided to investigate if this observation could be corroborated using other robust genetic markers. We consequently made a first assessment of genetic structure using 24-loci MIRU-VNTRs data extracted from the SITVIT2 database (n = 607 clinical isolates collected in Russia, Albania, Turkey, Iraq, Brazil and China). Combining Minimum Spanning Trees and Bayesian population structure analyses (using STRUCTURE and TESS softwares), we distinctly identified eight tentative phylogenetic groups (T1-T8) with a remarkable correlation with geographical origin. We further compared the present structure observed with other L4 sublineages (n = 416 clinical isolates belonging to LAM, Haarlem, X, S sublineages), and showed that 5 out of 8 T groups seemed phylogeographically well-defined as opposed to the remaining 3 groups that partially mixed with other L4 isolates. These results provide with novel evidence about phylogeographically specificity of a proportion of ill-defined T group of M. tuberculosis. The genetic structure observed will now be further validated on an enlarged worldwide dataset using Whole Genome Sequencing (WGS).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5293260PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171584PLOS

Publication Analysis

Top Keywords

genetic structure
12
bayesian population
8
population structure
8
ill-defined group
8
mycobacterium tuberculosis
8
tuberculosis genetic
8
clinical isolates
8
structure observed
8
structure
7
sublineages
5

Similar Publications

Background: Sponges harbor microbial communities that play crucial roles in host health and ecology. However, the genetic adaptations that enable these symbiotic microorganisms to thrive within the sponge environment are still being elucidated. To understand these genetic adaptations, we conducted a comparative genomics analysis on 350 genomes of Actinobacteriota, a phylum commonly associated with sponges.

View Article and Find Full Text PDF

Background: Epidermolysis bullosa (EB) is a serious, painful, hereditary and still incurable genetic condition. Due to blistering or wounds on the skin caused by the slightest touch, a person suffering from epidermolysis bullosa is prevented from achieving the same quality of life as a healthy person. Until now, psychosocial research has focused on the description of the problems of people living with the disease.

View Article and Find Full Text PDF

Background: Stemona tuberosa, a vital species in traditional Chinese medicine, has been extensively cultivated and utilized within its natural distribution over the past decades. While the chloroplast genome of S. tuberosa has been characterized, its mitochondrial genome (mitogenome) remains unexplored.

View Article and Find Full Text PDF

Background: Mutations in the LARS2 gene are correlated with Perrault syndrome, a rare autosomal recessive genetic disorder, that is typically characterized by sensorineural hearing loss and ovarian insufficiency.

Methods: Whole-exome sequencing and mutational analysis were employed to identify hearing loss-causing genes in a Chinese family from the Guangxi Zhuang Autonomous Region. Clinical phenotypes, audiological data, and color Doppler ultrasound of the family were collected, and a series of computer software were used to analyze the impact of genetic variations on protein structure and function.

View Article and Find Full Text PDF

Characterization and genomic analysis of a jumbo phage, PG216, with broad lytic activity against several Vibrio species.

Arch Virol

January 2025

Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, College of Oceanography, Hohai University, Nanjing, Jiangsu, China.

In this study, a lytic phage, named PG216, was obtained from seawater collected in Qingdao, using Vibrio parahaemolyticus strain G299 as its host. Transmission electron microscopy revealed that phage PG216 has an icosahedral head with a diameter of 100 ± 6.7 nm and a contractible tail with a length of 126 ± 6.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!