The metal affinities of metal-sensing transcriptional regulators co-vary with cellular metal concentrations over more than 12 orders of magnitude. To understand the cause of this relationship, we determined the structure of the Ni(II) sensor InrS and then created cyanobacteria (Synechocystis PCC 6803) in which transcription of genes encoding a Ni(II) exporter and a Ni(II) importer were controlled by InrS variants with weaker Ni(II) affinities. Variant strains were sensitive to elevated nickel and contained more nickel, but the increase was small compared with the change in Ni(II) affinity. All of the variant sensors retained the allosteric mechanism that inhibits DNA binding following metal binding, but a response to nickel in vivo was observed only when the sensitivity was set to respond in a relatively narrow (less than two orders of magnitude) range of nickel concentrations. Thus, the Ni(II) affinity of InrS is attuned to cellular metal concentrations rather than the converse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5365139PMC
http://dx.doi.org/10.1038/nchembio.2310DOI Listing

Publication Analysis

Top Keywords

cellular metal
8
metal concentrations
8
orders magnitude
8
niii affinity
8
niii
7
tight tunable
4
tunable range
4
range niii
4
niii sensing
4
sensing buffering
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!