Exploiting the superior properties of nanomaterials at macroscopic scale is a key issue of nanoscience. Different from the integration strategy, "additive synthesis" of macroscopic structures from nanomaterial templates may be a promising choice. In this paper, we report the epitaxial growth of aligned, continuous, and catalyst-free carbon nanofiber thin films from carbon nanotube films. The fabrication process includes thickening of continuous carbon nanotube films by gas-phase pyrolytic carbon deposition and further graphitization of the carbon layer by high-temperature treatment. As-fabricated nanofibers in the film have an "annual ring" cross-section, with a carbon nanotube core and a graphitic periphery, indicating the templated growth mechanism. The absence of a distinct interface between the carbon nanotube template and the graphitic periphery further implies the epitaxial growth mechanism of the fiber. The mechanically robust thin film with tunable fiber diameters from tens of nanometers to several micrometers possesses low density, high electrical conductivity, and high thermal conductivity. Further extension of this fabrication method to enhance carbon nanotube yarns is also demonstrated, resulting in yarns with ∼4-fold increased tensile strength and ∼10-fold increased Young's modulus. The aligned and continuous features of the films together with their outstanding physical and chemical properties would certainly promote the large-scale applications of carbon nanofibers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsnano.6b04855 | DOI Listing |
Mikrochim Acta
December 2024
School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China.
A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano, 77, 38123, Trento, Italy.
In this study, DL-phenylalanine modified with a multiwall carbon nanotube paste electrode is used as advanced electrochemical sensor for analysing of 0.1 mM caffeic acid (CFA) with simultaneous detection of riboflavin (RFN). The developed sensors include electrochemically polymerized DL-phenylalanine (DL-PA) modified multiwall carbon nanotube paste electrode [DL-PAMMCNTPE] and bare multiwall carbon nanotube paste electrode [BMCNTPE].
View Article and Find Full Text PDFBioelectrochemistry
December 2024
Louisiana Cancer Research Center, School of Medicine, 1700 Tulane Ave, New Orleans, Louisiana 70112, USA.
The folate receptor (FR) is a well-known biomarker that is overexpressed in many cancer cells, making it a valuable target for cancer diagnostics and therapeutic strategies. However, identifying cancer biomarkers remains a challenge due to factors such as lengthy procedures, high costs, and low sensitivity. This study presents the development of a novel, cost-effective biosensor designed for the detection of FR.
View Article and Find Full Text PDFNanotechnology
December 2024
CCTS/DFQM, UFSCar - Campus Sorocaba, Rod. João Leme dos Santos km 110 - SP-264 Bairro do Itinga - Sorocaba CEP 18052-780, Sorocaba, 18052-780, BRAZIL.
Nanomaterials stand out for their exceptional properties and innovative potential, especially in applications that protect against space radiation. They offer an innovative approach to this challenge, demonstrating notable properties of radiation absorption and scattering, as well as flexibility and lightness for the development of protective clothing and equipment. This review details the use of polymeric materials, such as polyimides (PIs), which are efficient at attenuating ultraviolet (UV) radiation and atomic oxygen (AO).
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dong Chuan Road, Shanghai 200240, China.
Direct harvesting of abundant solar thermal energy within organic phase-change materials (PCMs) has emerged as a promising way to overcome the intermittency of renewable solar energy and pursue high-efficiency heating-related applications. Organic PCMs, however, generally suffer from several common shortcomings including melting-induced leakage, poor solar absorption, and low thermal conductivity. Compounding organic PCMs with single-component carbon materials faces the difficulty in achieving optimized comprehensive performance enhancement.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!