Steroid-resistant nephrotic syndrome (SRNS) causes 15% of chronic kidney disease cases. A mutation in 1 of over 40 monogenic genes can be detected in approximately 30% of individuals with SRNS whose symptoms manifest before 25 years of age. However, in many patients, the genetic etiology remains unknown. Here, we have performed whole exome sequencing to identify recessive causes of SRNS. In 7 families with SRNS and facultative ichthyosis, adrenal insufficiency, immunodeficiency, and neurological defects, we identified 9 different recessive mutations in SGPL1, which encodes sphingosine-1-phosphate (S1P) lyase. All mutations resulted in reduced or absent SGPL1 protein and/or enzyme activity. Overexpression of cDNA representing SGPL1 mutations resulted in subcellular mislocalization of SGPL1. Furthermore, expression of WT human SGPL1 rescued growth of SGPL1-deficient dpl1Δ yeast strains, whereas expression of disease-associated variants did not. Immunofluorescence revealed SGPL1 expression in mouse podocytes and mesangial cells. Knockdown of Sgpl1 in rat mesangial cells inhibited cell migration, which was partially rescued by VPC23109, an S1P receptor antagonist. In Drosophila, Sply mutants, which lack SGPL1, displayed a phenotype reminiscent of nephrotic syndrome in nephrocytes. WT Sply, but not the disease-associated variants, rescued this phenotype. Together, these results indicate that SGPL1 mutations cause a syndromic form of SRNS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5330730 | PMC |
http://dx.doi.org/10.1172/JCI89626 | DOI Listing |
Discov Oncol
December 2024
Department of Urology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
Background: Lipid metabolism is crucial in tumor formation and progression. However, the role of lipid metabolism genes (LMGs) in bladder cancer (BLCA) are unknown. The purpose of this study was to construct a LMGs-related subtypes that predicted the treatment and prognosis of BLCA patients.
View Article and Find Full Text PDFAdv Biol Regul
December 2024
Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA. Electronic address:
Sphingosine phosphate lyase insufficiency syndrome (SPLIS) is a genetic disease associated with renal, endocrine, neurological, skin and immune defects. SPLIS is caused by inactivating mutations in SGPL1, which encodes sphingosine phosphate lyase (SPL). SPL catalyzes the irreversible degradation of the bioactive sphingolipid sphingosine-1-phosphate (S1P), a key regulator of lymphocyte egress.
View Article and Find Full Text PDFOrphanet J Rare Dis
September 2024
Department of Pediatrics, University of California, San Francisco, CA, USA.
Mol Biol Res Commun
January 2024
Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
Sphingosine 1 phosphate (S1P) is involved in the pathogenesis of asthma by stimulation of the alpha-smooth muscle actin (SMA) expression and remodeling of fibroblasts. This study was designed to determine the effects of selected micro RNAs in regulation of S1P and related metabolic pathways in a human lung fibroblast cell line. The fibroblast cell line (CIRC-HLF, C580) was cultured and transfected with individual viral vectors carrying miR124, mi125b, mi133b or mi130a.
View Article and Find Full Text PDFDaru
December 2024
Faculty of Medicine, European University of Lefke, Mersin 10, Lefke, 99728, Northern Cyprus, Turkey.
Background: The focus on repurposing readily available, well-known drugs for new, creative uses has grown recently. One such medication is metformin, a drug commonly used to manage diabetes, which shows a favorable correlation between its use and lower cancer morbidity and death. Numerous investigations and clinical trials have been conducted to evaluate the possible application of metformin as an anticancer medication in light of this conclusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!