Autotaxin produces the bioactive lipid lysophosphatidic acid (LPA) and is a drug target of considerable interest for numerous pathologies. We report the expedient, structure-guided evolution of weak physiological allosteric inhibitors (bile salts) into potent competitive Autotaxin inhibitors that do not interact with the catalytic site. Functional data confirms that our lead compound attenuates LPA mediated signaling in cells and reduces LPA synthesis in vivo, providing a promising natural product derived scaffold for drug discovery.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jmedchem.6b01743DOI Listing

Publication Analysis

Top Keywords

autotaxin inhibitors
8
rational design
4
design autotaxin
4
inhibitors structural
4
structural evolution
4
evolution endogenous
4
endogenous modulators
4
modulators autotaxin
4
autotaxin produces
4
produces bioactive
4

Similar Publications

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by joint swelling, pain, and bone remodeling. We previously reported that autotaxin (ATX) deficiency disrupts lipid rafts in macrophages. Lipid raft disruption results in the dysregulation of RANK signaling, which is crucial for osteoclastogenesis and the pathogenesis of RA.

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a progressive, fatal lung disease lacking effective treatments. Autotaxin (ATX) plays a crucial role in exacerbating inflammation and fibrosis, making it a promising target for fibrosis therapies. Herein, starting from PAT-409 (Cudetaxestat), a series of novel ATX inhibitors bearing 1-indole-3-carboxamide, 4,5,6,7-tetrahydro-7-pyrazolo[3,4-]pyridin-7-one, or 4,5,6,7-tetrahydro-1-pyrazolo[4,3-]pyridine cores were designed based on the structure of ATX hydrophobic tunnel.

View Article and Find Full Text PDF

Autotaxin (ATX), encoded by ENPP2, is a clinical target in pancreatic ductal adenocarcinoma (PDAC). ATX catalyzes the production of lysophosphatidic acid (LPA), an important regulator within the tumor microenvironment (TME), yet the pro-tumorigenic action of the ATX/LPA axis in PDAC remains unclear. Here, by interrogating patient samples and cell line datasets, we show that the PDAC TME, rather than cancer cells, is responsible for the majority of ENPP2 expression, and highlight a key role for cancer associated fibroblast (CAF)-derived ATX in autocrine and paracrine pro-tumorigenic signaling.

View Article and Find Full Text PDF

We introduce an advanced model for predicting protein-ligand interactions. Our approach combines the strengths of graph neural networks with physics-based scoring methods. Existing structure-based machine-learning models for protein-ligand binding prediction often fall short in practical virtual screening scenarios, hindered by the intricacies of binding poses, the chemical diversity of drug-like molecules, and the scarcity of crystallographic data for protein-ligand complexes.

View Article and Find Full Text PDF

Design, synthesis and evaluation of 3-(2-(substituted benzyloxy)benzylidene) pyrrolidine-2,5-dione derivatives for novel ATX inhibitor.

Bioorg Med Chem Lett

December 2024

Data Convergence Drug Research Center, Korea Research Institute of Chemical Technology, Yuseong-gu, Daejeon 34114, Republic of Korea; Department of Medicinal Chemistry and Pharmacology, KRICT School, University of Science and Technology, Yuseong-gu, Daejeon 34113, Republic of Korea. Electronic address:

Article Synopsis
  • Autotaxin (ATX) is being targeted for new liver disease treatments, and drug candidates were identified through high-throughput screening methods.
  • Researchers synthesized a small molecule called KR-40795, designed to inhibit ATX's activity by binding to specific regions of the enzyme.
  • KR-40795 effectively reduced collagen formation and lipid accumulation in liver cells, showcasing its potential to treat liver conditions like fibrosis and steatosis.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!