A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The TGF-β-induced up-regulation of NKG2DLs requires AKT/GSK-3β-mediated stabilization of SP1. | LitMetric

The TGF-β-induced up-regulation of NKG2DLs requires AKT/GSK-3β-mediated stabilization of SP1.

J Cell Mol Med

Department of Microbial and Biochemical Pharmacy, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China.

Published: May 2017

Natural killer (NK) cells play an important role in preventing cancer development. NK group 2 member D (NKG2D) is an activating receptor expressed in the membrane of NK cells. Tumour cells expressing NKG2DL become susceptible to an immune-dependent rejection mainly mediated by NK cells. The paradoxical roles of transforming growth factor beta (TGF-β) in regulation of NKG2DL are presented in many studies, but the mechanism is unclear. In this study, we showed that TGF-β up-regulated the expression of NKG2DLs in both PC3 and HepG2 cells. The up-regulation of NKG2DLs was characterized by increasing the expression of UL16-binding proteins (ULBPs) 1 and 2. TGF-β treatment also increased the expression of transcription factor SP1. Knockdown of SP1 significantly attenuated TGF-β-induced up-regulation of NKG2DLs in PC3 and HepG2 cells, suggesting that SP1 plays a key role in TGF-β-induced up-regulation of NKG2DLs. TGF-β treatment rapidly increased SP1 protein expression while not mRNA level. It might be due to that TGF-β can elevate SP1 stability by activating PI3K/AKT signalling pathway, subsequently inhibiting GSK-3β activity and decreasing the association between SP1 and GSK-3β. Knockdown of GSK-3β further verified our findings. Taken together, these results revealed that AKT/GSK-3β-mediated stabilization of SP1 is required for TGF-β induced up-regulation of NKG2DLs. Our study provided valuable evidence for exploring the tumour immune modulation function of TGF-β.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5387140PMC
http://dx.doi.org/10.1111/jcmm.13025DOI Listing

Publication Analysis

Top Keywords

up-regulation nkg2dls
20
tgf-β-induced up-regulation
12
akt/gsk-3β-mediated stabilization
8
sp1
8
stabilization sp1
8
nkg2dls pc3
8
pc3 hepg2
8
hepg2 cells
8
tgf-β treatment
8
tgf-β
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!