A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

RNA-binding protein SAMD4 regulates skeleton development through translational inhibition of Mig6 expression. | LitMetric

RNA-binding protein SAMD4 regulates skeleton development through translational inhibition of Mig6 expression.

Cell Discov

State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Sciences, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences , Shanghai, China.

Published: January 2017

Protein translation regulation has essential roles in inflammatory responses, cancer initiation and the pathogenesis of several neurodegenerative disorders. However, the role of the regulation of protein translation in mammalian skeleton development has been rarely elaborated. Here we report that the lack of the RNA-binding protein sterile alpha motif domain containing protein 4 (SAMD4) resulted in multiple developmental defects in mice, including delayed bone development and decreased osteogenesis. Samd4-deficient mesenchymal progenitors exhibit impaired osteoblast differentiation and function. Mechanism study demonstrates that SAMD4 binds the Mig6 mRNA and inhibits MIG6 protein synthesis. Consistent with this, Samd4-deficient cells have increased MIG6 protein level and knockdown of Mig6 rescues the impaired osteogenesis in Samd4-deficient cells. Furthermore, Samd4-deficient mice also display chondrocyte defects, which is consistent with the regulation of MIG6 protein level by SAMD4. These findings define SAMD4 as a previously unreported key regulator of osteoblastogenesis and bone development, implying that regulation of protein translation is an important mechanism governing skeletogenesis and that control of protein translation could have therapeutic potential in metabolic bone diseases, such as osteoporosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259697PMC
http://dx.doi.org/10.1038/celldisc.2016.50DOI Listing

Publication Analysis

Top Keywords

protein translation
16
mig6 protein
12
protein
9
rna-binding protein
8
protein samd4
8
skeleton development
8
regulation protein
8
bone development
8
osteogenesis samd4-deficient
8
samd4-deficient cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!