Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Protein translation regulation has essential roles in inflammatory responses, cancer initiation and the pathogenesis of several neurodegenerative disorders. However, the role of the regulation of protein translation in mammalian skeleton development has been rarely elaborated. Here we report that the lack of the RNA-binding protein sterile alpha motif domain containing protein 4 (SAMD4) resulted in multiple developmental defects in mice, including delayed bone development and decreased osteogenesis. Samd4-deficient mesenchymal progenitors exhibit impaired osteoblast differentiation and function. Mechanism study demonstrates that SAMD4 binds the Mig6 mRNA and inhibits MIG6 protein synthesis. Consistent with this, Samd4-deficient cells have increased MIG6 protein level and knockdown of Mig6 rescues the impaired osteogenesis in Samd4-deficient cells. Furthermore, Samd4-deficient mice also display chondrocyte defects, which is consistent with the regulation of MIG6 protein level by SAMD4. These findings define SAMD4 as a previously unreported key regulator of osteoblastogenesis and bone development, implying that regulation of protein translation is an important mechanism governing skeletogenesis and that control of protein translation could have therapeutic potential in metabolic bone diseases, such as osteoporosis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259697 | PMC |
http://dx.doi.org/10.1038/celldisc.2016.50 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!