This study was carried out with the aim of developing the methodology to determine elemental composition in wheat and identify the best germplasm for further research. Orphan and genetically diverse Afghan wheat landraces were chosen and EDXRF was used to measure the content of some of the elements to establish elemental composition in grains of 266 landraces using 10 reference lines. Four elements, K, Mg, P, and Fe, were measured by standardizing sample preparation. The results of hierarchical cluster analysis using elemental composition data sets indicated that the Fe content has an opposite pattern to the other elements, especially that of K. By systematic analysis the best wheat germplasms for P content and Fe content were identified. In order to compare the sensitivity of EDXRF, the ICP method was also used and the similar results obtained confirmed the EDXRF methodology. The sampling method for measurement using EDXRF was optimized resulting in high-throughput profiling of elemental composition in wheat grains at low cost. Using this method, we have characterized the Afghan wheat landraces and isolated the best genotypes that have high-elemental content and have the potential to be used in crop improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5282750PMC
http://dx.doi.org/10.1270/jsbbs.16041DOI Listing

Publication Analysis

Top Keywords

elemental composition
16
afghan wheat
12
wheat landraces
12
best genotypes
8
composition wheat
8
wheat
6
content
5
analysis grain
4
elements
4
grain elements
4

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Rationale: The complexation with dissolved organic matter (DOM) is a pivotal factor influencing transformations, transport, and bioavailability of mercury (Hg) in aquatic environments. However, identifying these complexes poses a significant challenge because of their low concentrations and the presence of coexisting ions.

Methods: In this study, mercury-dissolved organic matter (Hg-DOM) complexes were isolated through solid-phase extraction (SPE) from Hg-humic acid suspensions, and complexes were putatively identified using ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS).

View Article and Find Full Text PDF

Soil nutrients and meteorological conditions are pivotal environmental factors influencing plant growth and development. This study systematically analyzes how soil nutrients and meteorological factors influence the phenotypic growth and seed production of wild Elymus nutans in Tibet. These environmental factors are critical ecological determinants, and this research seeks to unveil the complex and diverse ecological adaptation mechanisms of the species.

View Article and Find Full Text PDF

A roadmap from the bond strength to the grain-boundary energies and macro strength of metals.

Nat Commun

January 2025

Key Laboratory of Automobile Materials, Ministry of Education, Department of Materials Science and Engineering, Jilin University, 130022, Changchun, China.

Correlating the bond strength with the macro strength of metals is crucial for understanding mechanical properties and designing multi-principal-element alloys (MPEAs). Motivated by the role of grain boundaries in the strength of metals, we introduce a predictive model to determine the grain-boundary energies and strength of metals from the cohesive energy and atomic radius. This scheme originates from the d-band characteristics and broken-bond spirit of tight-binding models, and demonstrates that the repulsive/attractive effects play different roles in the variation of bond strength for different metals.

View Article and Find Full Text PDF

A potential eco-friendly degradation of methyl orange by water-ball (sodium polyacrylate) stabilized zero valent iron nanoparticles.

Heliyon

January 2025

Department of Pharmaceutical Science, Faculty of Pharmacy, Umm Al-Qura University, Makkah, P.O. Box 751, Saudi Arabia.

This study presents the synthesis and application of water-ball (sodium polyacrylate) stabilized zero-valent iron nanoparticles (wb@Fe) for the eco-friendly degradation of Methyl Orange (MO). The nanoparticles were prepared using a chemical reduction method using NaBH. Characterization techniques including Field Emission Scanning Electron Microscopy (FESEM), Energy Dispersive X-ray Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), X-ray Photoelectron Spectroscopy (XPS), and X-ray Diffraction (XRD) were employed to analyze the morphology, elemental composition, valent state and crystallinity of the nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!