Regulation of muscle growth and regeneration by the immune system.

Nat Rev Immunol

Molecular, Cellular and Integrative Physiology Program, University of California, Los Angeles, California 90095-1606, USA.

Published: March 2017

Diseases of muscle that are caused by pathological interactions between muscle and the immune system are devastating, but rare. However, muscle injuries that involve trauma and regeneration are fairly common, and inflammation is a clear feature of the regenerative process. Investigations of the inflammatory response to muscle injury have now revealed that the apparently nonspecific inflammatory response to trauma is actually a complex and coordinated interaction between muscle and the immune system that determines the success or failure of tissue regeneration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452982PMC
http://dx.doi.org/10.1038/nri.2016.150DOI Listing

Publication Analysis

Top Keywords

immune system
12
muscle immune
8
inflammatory response
8
muscle
5
regulation muscle
4
muscle growth
4
growth regeneration
4
regeneration immune
4
system diseases
4
diseases muscle
4

Similar Publications

Persistence is a strategy used by many viruses to evade eradication by the immune system, ensuring their permanence and transmission within the host and optimizing viral fitness. During persistence, viruses can trigger various phenomena, including target organ damage, mainly due to an inflammatory state induced by infection, as well as cell proliferation and/or immortalization. In addition to immune evasion and chronic inflammation, factors contributing to viral persistence include low-level viral replication, the accumulation of viral mutants, and, most importantly, maintenance of the viral genome and reliance on viral oncoprotein production.

View Article and Find Full Text PDF

Achieving the precise targeting of lentiviral vectors (LVs) to specific cell populations is crucial for effective gene therapy, particularly in cancer treatment where the modulation of the tumor microenvironment can enhance anti-tumor immunity. Programmed cell death protein 1 (PD-1) is overexpressed on activated tumor-infiltrating T lymphocytes, including regulatory T cells that suppress immune responses via FOXP3 expression. We developed PD1-targeted LVs by incorporating the anti-PD1 nanobody nb102c3 into receptor-blinded measles virus H and VSV-G glycoproteins.

View Article and Find Full Text PDF

Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.

View Article and Find Full Text PDF

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!