Extraordinary high strength Ti-Zr-Ta alloys through nanoscaled, dual-cubic spinodal reinforcement.

Acta Biomater

School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia; Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia. Electronic address:

Published: April 2017

Unlabelled: While titanium alloys represent the current state-of-the-art for orthopedic biomaterials, concerns still remain over their modulus. Circumventing this via increased porosity requires high elastic admissible strains, yet also limits traditional thermomechanical strengthening techniques. To this end, a novel β-type Ti-Zr-Ta alloy system, comprised of Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta, was designed and characterized mechanically and microstructurally. As-cast, this system displayed extremely high yield strengths and elastic admissible strains, up to 1.4GPa and potentially 1.48%, respectively. This strength was attributed to a nanoscaled, cuboidal structure of semi-coherent, dual body-centered cubic (BCC) phases, arising from the thermodynamics of interaction between Ta and Zr; this morphology occurring with dual BCC-phases is heretofore unreported in Ti-based alloys. Further, cell proliferation investigated by MTS assay suggests this was achieved without sacrificing biocompatibility, with no significant difference to either empty-well or commercially-pure Ti controls noted.

Statement Of Significance: The current research details microstructural, mechanical, and biological investigations into four novel biomedical alloys in a hitherto uninvestigated region of the Ti-Zr-Ta alloy system; Ti-45Zr-10Ta, Ti-40Zr-14Ta, Ti-35Zr-18Ta and Ti-30Zr-22Ta. We find that the investigated alloys display 0.2% yield strengths of up to 1.40GPa and elastic admissible strains of up to 1.48%, along with biological properties comparable to that seen in the conventional metallic biomaterial ASTM Grade-2 CP-Ti, achieved in the complete absence of traditional thermomechanical processing techniques. This is attributed to the presence of a dual-BCC cuboidal nanostructure, achieved via spinodal decomposition; while similar structures have been reported in e.g. Ni-based superalloys, we believe this is the first such structure investigated in a Ti-based material. As such, this work is felt to be of great interest in aiding the design and manufacture of highly-biocompatible, porous, metallic biomaterials for orthopedic application.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2017.01.085DOI Listing

Publication Analysis

Top Keywords

elastic admissible
12
admissible strains
12
traditional thermomechanical
8
ti-zr-ta alloy
8
alloy system
8
ti-45zr-10ta ti-40zr-14ta
8
ti-40zr-14ta ti-35zr-18ta
8
ti-35zr-18ta ti-30zr-22ta
8
yield strengths
8
alloys
5

Similar Publications

Metal implants require an elastic modulus close to cortical bone (<30 GPa) to avoid stress shielding and ensure adequate load-bearing strength. The metastable β-type Ti-25Nb-8Sn alloy has a low elastic modulus (52 GPa), but its yield strength (<500 MPa) needs enhancement. This study enhances Ti-25Nb-8Sn's elastic admissible strain through cold rolling and aging heat treatments, investigating the microstructure's impact on mechanical and corrosion properties.

View Article and Find Full Text PDF

Spinodal Zr-Nb alloys with ultrahigh elastic admissible strain and low magnetic susceptibility for orthopedic applications.

Acta Biomater

August 2024

Centre for Additive Manufacturing, School of Engineering, RMIT University, Melbourne, Victoria 3001, Australia. Electronic address:

Metallic biomaterials, such as stainless steels, cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, and titanium (Ti) alloys, have long been used as load-bearing implant materials due to their metallic mechanical strength, corrosion resistance, and biocompatibility. However, their magnetic susceptibility and elastic modulus of more than 100 GPa significantly restrict their therapeutic applicability. In this study, spinodal ZrNb, ZrNb, and ZrNb (at.

View Article and Find Full Text PDF

A minimal coarse-grained model for T=1 viral capsids assembled from 20 protein rigid trimers has been designed by extending a previously proposed form of the interaction energy written as a sum of anisotropic pairwise interactions between the trimeric capsomers. The extension of the model has been performed to properly account for the coupling between two internal coordinates: the one that measures the intercapsomer distance and the other that gives the intercapsomer dihedral angle. The model has been able to fit with less than a 10% error the atomic force microscopy (AFM) indentation experimental data for the empty capsid of the minute virus of mice (MVM), providing in this way an admissible picture of the main mechanisms behind the capsid deformations.

View Article and Find Full Text PDF

The use of surrogate models based on Convolutional Neural Networks (CNN) is increasing significantly in microstructure analysis and property predictions. One of the shortcomings of the existing models is their limitation in feeding the material information. In this context, a simple method is developed for encoding material properties into the microstructure image so that the model learns material information in addition to the structure-property relationship.

View Article and Find Full Text PDF

Self-sustained oscillations can directly absorb energy from the constant environment to maintain its periodic motion by self-regulating. As a classical mechanical instability phenomenon, the Euler compression rod can rapidly release elastic strain energy and undergo large displacement during buckling. In addition, its boundary configuration is usually easy to be modulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!