A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods. | LitMetric

Comparison of the physical characteristics of monodisperse non-ionic surfactant vesicles (NISV) prepared using different manufacturing methods.

Int J Pharm

Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, G4 0RE Glasgow, United Kingdom. Electronic address:

Published: April 2017

Non-ionic surfactant vesicles (NISV) are synthetic membrane vesicles formed by self-assembly of a non-ionic surfactant, often in a mixture with cholesterol and a charged chemical species. Different methods can be used to manufacture NISV, with the majority of these requiring bulk mixing of two phases. This mixing process is time-consuming and leads to the preparation of large and highly dispersed vesicles, which affects the consistency of the final product and could hinder subsequent regulatory approval. In this study, we have compared the physical characteristics of NISV prepared using two conventional methods (thin-film hydration method and heating method) with a recently introduced microfluidic method. The resulting particles from these methods were assessed for their physical characteristics and in vitro cytotoxicity. Through microfluidics, nano-sized NISV were prepared in seconds, through rapid and controlled mixing of two miscible phases (lipids dissolved in alcohol and an aqueous medium) in a microchannel, without the need of a size reduction step, as required for the conventional methods. Stability studies over two months showed the particles were stable regardless of the method of preparation and there were no differences in terms of EC50 on A375 and A2780 cell lines. However, this work demonstrates the flexibility and ease of applying lab-on-chip microfluidics for the preparation of NISV that could be used to significantly improve formulation research and development, by enabling the rapid manufacture of a consistent end-product, under controlled conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.02.007DOI Listing

Publication Analysis

Top Keywords

physical characteristics
12
non-ionic surfactant
12
nisv prepared
12
surfactant vesicles
8
vesicles nisv
8
conventional methods
8
nisv
6
methods
5
comparison physical
4
characteristics monodisperse
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!