CTCF sites (binding motifs for CCCTC-binding factor, an insulator protein) are located considerable distances apart on genomes but are closely positioned in organized chromatin. The close positioning of CTCF sites is often cell type or tissue specific. Here we analyzed chromatin organization in eight CTCF sites around the β-globin locus by 3C assay and explored the roles of erythroid specific transcription activator GATA-1 and KLF1 in it. It was found five CTCF sites convergent to the locus interact with each other in erythroid K562 cells but not in non-erythroid 293 cells. The interaction was decreased by depletion of GATA-1 or KLF1. It accompanied reductions of CTCF and Rad21 occupancies and loss of active chromatin structure at the CTCF sites. Furthermore Rad21 occupancy was reduced in the β-globin locus control region (LCR) hypersensitive sites (HSs) by the depletion of GATA-1 or KLF1. The role of GATA-1 in interaction between CTCF sites was revealed by its ectopic expression in 293 cells and by deletion of a GATA-1 site in the LCR HS2. These findings indicate that erythroid specific activator GATA-1 acts at CTCF sites around the β-globin locus to establish tissue-specific chromatin organization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbagrm.2017.01.013 | DOI Listing |
The six subunit Origin Recognition Complex (ORC) is a DNA replication initiator that also promotes heterochromatinization in some species. A multi-omics study in a human cell line with mutations in three subunits of ORC, reveals that the subunits bind to DNA independent of each other rather than as part of a common six-subunit ORC. While DNA-bound ORC2 was seen to compact chromatin and attract repressive histone marks, the activation of chromatin and protection from repressive marks was seen at a large number of sites.
View Article and Find Full Text PDFbioRxiv
January 2025
Division of Hematology and Medical Oncology, Department of Medicine and Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
Gene expression is coordinated by a multitude of transcription factors (TFs), whose binding to the genome is directed through multiple interconnected epigenetic signals, including chromatin accessibility and histone modifications. These complex networks have been shown to be disrupted during aging, disease, and cancer. However, profiling these networks across diverse cell types and states has been limited due to the technical constraints of existing methods for mapping DNA:Protein interactions in single cells.
View Article and Find Full Text PDFACS Omega
December 2024
Department of Urology, Suzhou Ninth Hospital affiliated to Soochow University, Suzhou 215000, China.
EMBO J
January 2025
Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Campus-Vienna-Biocenter 1, 1030, Vienna, Austria.
Sci Rep
December 2024
School of Physical Science and Technology, Inner Mongolia University, Hohhot, 010021, People's Republic of China.
The CCCTC-binding factor (CTCF) is pivotal in orchestrating diverse biological functions across the human genome, yet the mechanisms driving its cell type-active DNA binding affinity remain underexplored. Here, we collected ChIP-seq data from 67 cell lines in ENCODE, constructed a unique dataset of cell type-active CTCF binding sites (CBS), and trained convolutional neural networks (CNN) to dissect the patterns of CTCF binding activity. Our analysis reveals that transcription factors RAD21/SMC3 and chromatin accessibility are more predictive compared to sequence motifs and histone modifications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!