Wastewater effluent is expected to be a pathway for microplastics to enter the aquatic environment, with microbeads from cosmetic products and polymer fibres from clothes likely to enter wastewater treatment plants (WWTP). To date, few studies have quantified microplastics in wastewater. Moreover, the lack of a standardized and applicable method to identify microplastics in complex samples, such as wastewater, has limited the accurate assessment of microplastics and may lead to an incorrect estimation. This study aimed to develop a validated method to sample and process microplastics from wastewater effluent and to apply the developed method to quantify and characterise wastewater-based microplastics in effluent from three WWTPs that use primary, secondary and tertiary treatment processes. We applied a high-volume sampling device that fractionated microplastics in situ and an efficient sample processing procedure to improve the sampling of microplastics in wastewater and to minimize the false detection of non-plastic particles. The sampling device captured between 92% and 99% of polystyrene microplastics using 25 μm-500 μm mesh screens in laboratory tests. Microplastic type, size and suspected origin in all studied WWTPs, along with the removal efficiency during the secondary and tertiary treatment stages, was investigated. Suspected microplastics were characterised using Fourier Transform Infrared spectroscopy, with between 22 and 90% of the suspected microplastics found to be non-plastic particles. An average of 0.28, 0.48 and 1.54 microplastics per litre of final effluent was found in tertiary, secondary and primary treated effluent, respectively. This study suggests that although low concentrations of microplastics are detected in wastewater effluent, WWTPs still have the potential to act as a pathway to release microplastics given the large volumes of effluent discharged to the aquatic environment. This study focused on a single sampling campaign, with long-term monitoring recommended to further characterise microplastics in wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2017.01.042DOI Listing

Publication Analysis

Top Keywords

microplastics wastewater
20
microplastics
17
wastewater effluent
12
wastewater
9
wastewater treatment
8
treatment plants
8
pathway microplastics
8
wastewater-based microplastics
8
aquatic environment
8
secondary tertiary
8

Similar Publications

Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.

View Article and Find Full Text PDF

Widespread polyethylene terephthalate microplastics (PET MPs) have played unintended role in nitrous oxide (NO) turnovers (i.e., production and consumption) at wastewater treatment plants (WWTPs).

View Article and Find Full Text PDF

This study thoroughly investigated the adsorption of Congo Red (CR) dye onto various microplastics (MPs), including high-density polyethylene (HDPE), polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP) and polyethylene terephthalate (PET). Initial adsorption capacities (q) revealed that HDPE had the highest value (21.90 mg/g), followed by PVC (4.

View Article and Find Full Text PDF

Comorbidities related to cardiovascular disease (CVD) and environmental pollution have emerged as serious concerns. The exposome concept underscores the cumulative impact of environmental factors, including climate change, air pollution, chemicals like PFAS, and heavy metals, on cardiovascular health. Chronic exposure to these pollutants contributes to inflammation, oxidative stress, and endothelial dysfunction, further exacerbating the global burden of CVDs.

View Article and Find Full Text PDF

Would the Oceans Become Toxic to Humanity Due to Use and Mismanagement of Plastics?

Int J Environ Res Public Health

December 2024

School of Applied Engineering and Technology, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA.

The production of plastics and associated products, including microplastics (MPs), has been surging over the past several decades and now poses a grave environmental threat. This is because when not appropriately recycled, incinerated, or disposed of in fully contained landfills, plastic waste manifests as a potent pollutant, with vast amounts finding their way into oceans annually, adversely impacting marine life and ecosystems. Additionally, research also confirms there are direct impacts from MPs on water, air, and soil, impacting ecosystem and human health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!