Glomalin related soil protein (GRSP) is a hydrophobic glycoprotein that is significant for soil organic carbon (SOC) persistence and sequestration, owing to its large contribution to SOC pool and long turnover time. However, the contribution of GRSP to dissolve OC (DOC) leach from soil is not yet comprehensively explored, though it could have implication in understanding SOC dynamics. We, therefore, aim to measure the contribution of GRSP to DOC, in a range of land uses and climatic seasons in the dry tropical ecosystem. Our results demonstrated that a significant proportion of GRSP (water soluble GRSP; WS-GRSP) leached with DOC (7.9-21.9 mg kg), which accounts for 0.2-0.23% of soils total GRSP (T-GRSP). Forest exhibited significantly higher WS-GRSP and DOC leaching than fallow and agriculture. WS-GRSP and DOC accumulations were higher in the dry season (summer and winter) than in rainy. The extent of seasonal variations was higher in forest than in other two land uses, indicating the role of vegetation and biological activity in soil dissolve organic matter (DOM) dynamics. The regression analysis among WS-GRSP, T-GRSP, DOC and SOC prove that the accumulations and leaching of GRSP and other soil OM (SOM) depend on similar factors. The ratio of WS-GRSP-C to DOC was higher in agriculture soil than in forest and fallow, likely a consequence of altered soil chemistry, and organic matter quantity and quality due to soil management practices. Multivariate analysis reflects a strong linkage among GRSP and SOC storage and leaching, soil nutrients (nitrogen and phosphorus) and other important soil properties (pH and bulk density), suggesting that improving GRSP and other SOM status is an urgent need for the both SOC sequestration and soil health in dry tropical agro-ecosystems.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2017.01.041 | DOI Listing |
Environ Sci Ecotechnol
January 2025
Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia.
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management.
View Article and Find Full Text PDFFront Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFFront Microbiol
January 2025
College of Tobacco Science, Yunnan Agricultural University, Kunming, Yunnan, China.
The imbalanced soil nutrient status caused by the long-term monoculture of flue-cured tobacco are a concern. The tobacco-maize relay intercropping, widely used in Yunnan, may improve soil nutrients by enhancing the soil microbial community, but this remains unexplored. This study employed high-throughput sequencing technology to examine soil microbial diversity under tobacco monoculture and tobacco-maize relay intercropping, using the varieties Hongda and K326, respectively.
View Article and Find Full Text PDFFront Microbiol
January 2025
School of Life Sciences, Hebei University, Baoding, China.
Introduction: Exploring the interactions between dark septate endophytes (DSE) in plant roots across diverse heavy metal habitats-considering host plants, site characteristics, and microbial communities-provides insights into the distribution patterns of DSE in metal-rich environments and their mechanisms for developing heavy metal resistance.
Methods: This study collected samples of three common plant species (, PA, , SV, and , AA) and their corresponding soil samples from three heavy metal-contaminated sites: Baiyang Lake, BY, Fengfeng mining area, FF, and Huangdao, HD. Utilizing high-throughput sequencing and physicochemical analysis methods, the biological and abiotic factors affecting DSE colonization and distribution in the roots were investigated.
Data Brief
February 2025
UMR SAS, INRAE, Institut Agro, 35 000 Rennes, France.
Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!