Purpose: Breakdown of the inner blood-retinal barrier (iBRB) occurs in many retinal disorders and may cause retinal edema often responsible for vision loss. Dexamethasone is used in clinical practice to restore iBRB. The aim of this study was to characterize the impact of a surgically induced iBRB breakdown on retinal homeostatic changes due to dystrophin Dp71, aquaporin-4 (AQP4), and Kir4.1 alterations in Müller glial cells (MGC) in a mouse model. The protective effect of dexamethasone was assessed in this model. Moreover, retinal explants were used to control MGC exposure to a hypoosmotic solution containing barium.
Methods: Partial lens surgery was performed in C57BL6/J mice. Dystrophin Dp71, AQP4, and Kir4.1 expression was analyzed by quantitative RT-PCR, Western blot, and immunohistochemistry. Twenty-four hours after surgery, mice received a single intravitreal injection of dexamethasone or of vehicle.
Results: After partial lens surgery, iBRB permeability increased while Dp71 and AQP4 were downregulated and Kir4.1 was delocalized. These effects were partially prevented by dexamethasone injection. In the retinal explant model, MGC were swollen and Dp71, AQP4, and Kir4.1 were downregulated after exposure to a hypoosmotic solution containing barium, but not in the presence of dexamethasone. Heat shock factor protein 1 (HSF1) was overexpressed in dexamethasone-treated retinas.
Conclusions: Partial lens surgery induces iBRB breakdown and molecular changes in MGC, including a downregulation of Dp71 and AQP4 and the delocalization of Kir4.1. Dexamethasone seems to protect retina from these molecular changes by upregulating HSF1.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1167/iovs.16-20617 | DOI Listing |
Neurobiol Dis
September 2024
Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China; Institute of Stroke Research, Soochow University, Suzhou, Jiangsu Province, China.
Objective: The glymphatic system serves as a perivascular pathway that aids in clearing liquid and solute waste from the brain, thereby enhancing neurological function. Disorders in glymphatic drainage contribute to the development of vasogenic edema following cerebral ischemia, although the molecular mechanisms involved remain poorly understood. This study aims to determine whether a deficiency in dystrophin 71 (DP71) leads to aquaporin-4 (AQP4) depolarization, contributing to glymphatic dysfunction in cerebral ischemia and resulting in brain edema.
View Article and Find Full Text PDFCells
April 2024
Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400 Saclay, France.
A deficiency in the shortest dystrophin-gene product, Dp71, is a pivotal aggravating factor for intellectual disabilities in Duchenne muscular dystrophy (DMD). Recent advances in preclinical research have achieved some success in compensating both muscle and brain dysfunctions associated with DMD, notably using exon skipping strategies. However, this has not been studied for distal mutations in the gene leading to Dp71 loss.
View Article and Find Full Text PDFMol Neurobiol
July 2023
Department of Pathology and Applied Neurobiology, Kyoto Prefectural University of Medicine Graduate School of Medical Science, 465 Kajii-Cho, Kawaramachi Hirokoji, Kamigyo-Ku, Kyoto, 602-8566, Japan.
Dystrophin is the causative gene for Duchenne and Becker muscular dystrophy (DMD/BMD), and it produces full-length and short dystrophin, Dp427 and Dp71, respectively, in the brain. The existence of the different dystrophin molecular complexes has been known for a quarter century, so it is necessary to derive precise expression profiles of the molecular complexes in the brain to elucidate the mechanism of cognitive symptoms in DMD/BMD patients. In order to investigate the Dp71 expression profile in cerebellum, we employed Dp71-specific tag-insertion mice, which allowed for the specific detection of endogenous Dp71 in the immunohistochemical analysis and found its expressions in the glial cells, Bergmann glial (BG) cells, and astrocytes, whereas Dp427 was exclusively expressed in the inhibitory postsynapses within cerebellar Purkinje cells (PCs).
View Article and Find Full Text PDFFront Cell Neurosci
September 2022
Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.
Idiopathic normal pressure hydrocephalus (iNPH) is a subtype of dementia with overlap toward Alzheimer's disease. Both diseases show deposition of the toxic metabolites amyloid-β and tau in brain. A unique feature with iNPH is that a subset of patients may improve clinically following cerebrospinal fluid (CSF) diversion (shunt) surgery.
View Article and Find Full Text PDFEye Vis (Lond)
April 2021
Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
Background: Although vascular endothelial growth factor A (VEGF-A) is known to play a key role in causing retinal edema, whether and how VEGF-A induces intracellular edema in the retina still remains unclear.
Methods: Sprague-Dawley rats were rendered diabetic with intraperitoneal injection of streptozotocin. Intravitreal injection of ranibizumab was performed 8 weeks after diabetes onset.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!