Spinal muscular atrophy (SMA) is a devastating motor neuron disease caused by mutations of the survival motor neuron 1 (SMN1) gene. SMN2, a paralogous gene to SMN1, can partially compensate for the loss of SMN1. On the basis of age at onset, highest motor function and SMN2 copy numbers, childhood-onset SMA can be divided into three types (SMA I-III). An inverse correlation was observed between SMN2 copies and the differential phenotypes of SMA. Interestingly, this correlation is not always absolute. Using SMA induced pluripotent stem cells (iPSCs), we found that the SMN was significantly decreased in both SMA III and SMA I iPSCs derived postmitotic motor neurons (pMNs) and γ-aminobutyric acid (GABA) neurons. Moreover, the significant differences of SMN expression level between SMA III (3 copies of SMN2) and SMA I (2 copies of SMN2) were observed only in pMNs culture, but not in GABA neurons or iPSCs. From these findings, we further discovered that the neurite outgrowth was suppressed in both SMA III and SMA I derived MNs. Meanwhile, the significant difference of neurite outgrowth between SMA III and SMA I group was also found in long-term cultures. However, significant hyperexcitability was showed only in SMA I derived mature MNs, but not in SMA III group. Above all, we propose that SMN protein is a major factor of phenotypic modifier. Our data may provide a new insight into recognition for differential phenotypes of SMA disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5522047 | PMC |
http://dx.doi.org/10.18632/oncotarget.14925 | DOI Listing |
Korean Circ J
November 2024
Department of Cardiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China.
Background And Objectives: This study aimed to investigate the roles of lncRNA uc003pxg.1 and miR-339-5p in regulating the occurrence and development of coronary heart disease.
Methods: First, the expression levels of uc003pxg.
Eur J Med Res
December 2024
Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.
Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.
Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.
Sci Rep
December 2024
Clinical Laboratory, Hebei General Hospital, Shijiazhuang, Hebei, China.
Objective: To explore the influence of SALL4 in cardiac fibroblasts on the progression of myocardial infarction.
Methods: Analysis of genes specifically expressed in myocardial infarction by bioinformatics methods; The impact of SALL4 on myocardial infarction was assessed using mouse ultrasound experiments and Masson staining; The effect of SALL4 on the expression levels of collagen-I and collagen-III in myocardial tissue was examined by immunohistochemical staining; The migration ability of cardiac fibroblasts was evaluated using a Transwell assay; The proliferative ability of cardiac fibroblasts was tested using a CCK-8 assay; The relative fluorescence intensity of α-SMA and CTGF in cardiac fibroblasts were checked through immunofluorescence staining experiment; The expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, α-SMA, CTGF, and PAI-1 in myocardial tissues or cardiac fibroblasts was detected using western blot analysis.
Results: SALL4-specific high expression in myocardial infarction; SALL4 intensified the alterations in the heart structure of mice with myocardial infarction and worsened the fibrosis of myocardial infarction; SALL4 also promoted the expression of SALL4, DOT1L, H3K79me2, P53, SHP2, YAP, nucleus-YAP, collagen-I, collagen-III, α-SMA, CTGF, and PAI-1 in myocardial infarction tissues and cardiac fibroblasts; Subsequently, SALL4 could enhance the immunofluorescence intensity of α-SMA and CTGF; Moreover, SALL4 could promote the proliferation and migration of cardiac fibroblasts.
Clin Sci (Lond)
December 2024
University of Utah Health, Salt Lake City, Utah, United States.
Septic acute kidney injury (AKI) is an important risk factor for developing chronic kidney disease (CKD). Hu antigen R (HuR) is recognized as a crucial modulator in inflammation. We hypothesized that elevated HuR contributes to the transition from septic AKI to CKD by promoting persistent inflammation and fibrosis, and inhibition of HuR may reverse septic kidney injury.
View Article and Find Full Text PDFArq Neuropsiquiatr
December 2024
Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil.
Background: Spinal muscular atrophy linked to chromosome 5q (SMA-5q) is a neurodegenerative disorder caused by mutations in the gene.
Objective: To describe the key demographic, clinical and genetic characteristics, as well as natural history data of patients with SMA-5q.
Methods: Up to January 2022, 706 patients with confirmed genetic diagnosis of SMA-5q, or their parents, completed a self-reported questionnaire on natural history, genetic characteristics, drug treatments, and multidisciplinary care.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!