The chronic myeloid leukemia stem cell: stemming the tide of persistence.

Blood

Epigenetics Unit, Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom.

Published: March 2017

Chronic myeloid leukemia (CML) is caused by the acquisition of the tyrosine kinase BCR-ABL1 in a hemopoietic stem cell, transforming it into a leukemic stem cell (LSC) that self-renews, proliferates, and differentiates to give rise to a myeloproliferative disease. Although tyrosine kinase inhibitors (TKIs) that target the kinase activity of BCR-ABL1 have transformed CML from a once-fatal disease to a manageable one for the vast majority of patients, only ∼10% of those who present in chronic phase (CP) can discontinue TKI treatment and maintain a therapy-free remission. Strong evidence now shows that CML LSCs are resistant to the effects of TKIs and persist in all patients on long-term therapy, where they may promote acquired TKI resistance, drive relapse or disease progression, and inevitably represent a bottleneck to cure. Since their discovery in patients almost 2 decades ago, CML LSCs have become a well-recognized exemplar of the cancer stem cell and have been characterized extensively, with the aim of developing new curative therapeutic approaches based on LSC eradication. This review summarizes our current understanding of many of the pathways and mechanisms that promote the survival of the CP CML LSCs and how they can be a source of new gene coding mutations that impact in the clinic. We also review recent preclinical approaches that show promise to eradicate the LSC, and future challenges on the path to cure.

Download full-text PDF

Source
http://dx.doi.org/10.1182/blood-2016-09-696013DOI Listing

Publication Analysis

Top Keywords

stem cell
16
cml lscs
12
chronic myeloid
8
myeloid leukemia
8
tyrosine kinase
8
cml
5
stem
4
leukemia stem
4
cell
4
cell stemming
4

Similar Publications

Identification of circadian rhythm-related biomarkers and development of diagnostic models for Crohn's disease using machine learning algorithms.

Comput Methods Biomech Biomed Engin

January 2025

Department of Gastroenterolgy, The Second Affiliated Hospital of Chengdu Medical College, China National Nuclear Corporation 416 Hospital, Chengdu, China.

The global rise in Crohn's Disease (CD) incidence has intensified diagnostic challenges. This study identified circadian rhythm-related biomarkers for CD using datasets from the GEO database. Differentially expressed genes underwent Weighted Gene Co-Expression Network Analysis, with 49 hub genes intersected from GeneCards data.

View Article and Find Full Text PDF

Hypertension, commonly known as high blood pressure, is a significant health issue that increases the risk of cardiovascular diseases, stroke, and renal failure. This condition broadly encompasses both primary and secondary forms. Despite extensive research, the underlying mechanisms of systemic arterial hypertension-particularly primary hypertension, which has no identifiable cause and is affected by genetic and lifestyle agents-remain complex and not fully understood.

View Article and Find Full Text PDF

Phenotypic Characterisation of Bone Marrow-Derived Haematopoietic Stem/Progenitor Cells from HIV-Infected Individuals.

Stem Cell Rev Rep

January 2025

Institute for Cellular and Molecular Medicine, Department of Immunology, SAMRC Extramural Unit for Stem Cell Research and Therapy, University of Pretoria, Pretoria, 0084, South Africa.

View Article and Find Full Text PDF

Saponins enhance the stability and cost-efficiency of human embryonic stem cell culture.

Cell Regen

January 2025

Department of Neurology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China.

The cultivation and differentiation of human embryonic stem cells (hESCs) into organoids are crucial for advancing of new drug development and personalized cell therapies. Despite establishing of chemically defined hESC culture media over the past decade, these media's reliance on growth factors, which are costly and prone to degradation, poses a challenge for sustained and stable cell culture. Here, we introduce an hESC culture system(E6Bs) that facilitates the long-term, genetically stable expansion of hESCs, enabling cells to consistently sustain high levels of pluripotency markers, including NANOG, SOX2, TRA-1-60, and SSEA4, across extended periods.

View Article and Find Full Text PDF

Bone marrow mesenchymal stromal cells (BM-MSCs) are integral components of the bone marrow microenvironment, playing a crucial role in supporting hematopoiesis. Recent studies have investigated the potential involvement of BM-MSCs in the pathophysiology of acute lymphoblastic leukemia (ALL). However, the exact contribution of BM-MSCs to leukemia progression remains unclear because of conflicting findings and limited characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!