Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The present study investigated potential modulatory effects of low doses of nano-sized titanium dioxide (TiO) on intestinal cells in vivo and in vitro. After short-term exposure to TiO nanoparticles in rats, histopathological analysis of intestinal tissues indicated a gender-specific effect with increased length of intestinal villi in male rats only. Moreover the intestinal tissue showed nanoparticle deposition as revealed by ICP-MS determination of titanium. Increased serum testosterone levels were also detected. Considering the male-specific effects detected in vivo, the TiO nanoparticle interaction with intestinal cells was further characterized in vitro and the modulating effect of testosterone and a hormone-induced growth factor, namely Insulin-like Growth Factor 1 (IGF-1), was also assessed. Cytotoxicity assays and analysis of Reactive Oxygen Species (ROS) production showed neither cellular alteration nor oxidative stress for nanoparticles at low concentrations, even though they were able to penetrate intestinal cells, as revealed by electron microscopy. Cell treatments with nanoparticles in association with testosterone or IGF-1 showed increased cell proliferation, compared to nanoparticles or testosterone/IGF-1 alone. Since long-term intake of TiO nanoparticles at low doses is a relevant scenario for human exposure, attention should be given to the potential modulating activity of this nanomaterial on cell proliferation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2017.01.031 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!