The hyperactivity of aldose reductase (AR) on glucose in diabetic conditions or on glutathionyl-hydroxynonenal in oxidative stress conditions, the source of cell damage and inflammation, appear to be balanced by the detoxifying action exerted by the enzyme. This detoxification acts on cytotoxic hydrophobic aldehydes deriving from membrane peroxidative processes. This may contribute to the failure in drug development for humans to favorably intervene in diabetic complications and inflammation, despite the specificity and high efficiency of several available aldose reductase inhibitors. This paper presents additional features to a previously proposed approach, on inhibiting the enzyme through molecules able to preferentially inhibit the enzyme depending on the substrate the enzyme is working on. These differential inhibitors (ARDIs) should act on glucose reduction catalyzed by AR without little or no effect on the reduction of alkenals or alkanals. The reasons why AR may be an eligible enzyme for differential inhibition are considered. These mainly refer to the evidence that, although AR is an unspecific enzyme that recognizes different substrates such as aldoses and hydrophobic aldehydes, it nevertheless displays a certain degree of specificity among substrates of the same class. After screening on edible vegetables, indications of the presence of molecules potentially acting as ARDIs are reported.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cbi.2017.01.025 | DOI Listing |
Cardiovasc Diabetol
January 2025
Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Background: Diabetic myocardial disorder (DbMD, evidenced by abnormal echocardiography or cardiac biomarkers) is a form of stage B heart failure (SBHF) at high risk for progression to overt HF. SBHF is defined by abnormal LV morphology and function and/or abnormal cardiac biomarker concentrations.
Objective: To compare the evolution of four DbMD groups based on biomarkers alone, systolic and diastolic dysfunction alone, or their combination.
Int J Mol Sci
January 2025
Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xianyang 712082, China.
The Qinghai-Tibet Plateau, famously known as the "Roof of the World", has witnessed a surge in individuals traveling or working there. However, a considerable percentage of these individuals may suffer from acute mountain sickness (AMS), with high-altitude pulmonary edema (HAPE) being a severe and potentially life-threatening manifestation. HAPE disrupts the balance of intrapulmonary tissue fluid, resulting in severe lung function impairment.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
January 2025
The State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China. Electronic address:
Ela tablets (ALP) is a traditional Uyghur medicinal formulation comprising 9 herbs. Clinical applications have demonstrated its potential in treating diabetic nephropathy (DN). However, its specific medicinal effects and pharmacodynamic components have not been elucidated.
View Article and Find Full Text PDFTransgenic Res
January 2025
Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.
Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Chemistry, Faculty of Science, Taibah University, Madinah 42353, Saudi Arabia.
Type 2 diabetes has become a significant global health challenge. Numerous drugs have been developed to treat the condition, either as standalone therapies or in combination when glycemic control cannot be achieved with a single medication. As existing treatments often come with limitations, there is an increasing focus on creating novel therapeutic agents that offer greater efficacy and fewer side effects to better address this widespread issue.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!