Vestibular hair cells of the inner ear are specialized receptors that detect mechanical stimuli from gravity and motion via the deflection of a polarized bundle of stereocilia located on their apical cell surfaces. The orientation of stereociliary bundles is coordinated between neighboring cells by core PCP proteins including the large adhesive G-protein coupled receptor Celsr1. We show that mice lacking Celsr1 have vestibular behavioral phenotypes including circling. In addition, we show that Celsr1 is asymmetrically distributed at cell boundaries between hair cells and neighboring supporting cells in the developing vestibular and auditory sensory epithelia. In the absence of Celsr1 the stereociliary bundles of vestibular hair cells are misoriented relative to their neighbors, a phenotype that is greatest in the cristae of the semicircular canals. Since horizontal semi-circular canal defects lead to circling in other mutant mouse lines, we propose that this PCP phenotype is the cellular basis of the circling behavior in Celsr1 mutants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5369242 | PMC |
http://dx.doi.org/10.1016/j.ydbio.2017.01.020 | DOI Listing |
Adv Sci (Weinh)
December 2024
Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
GJB2 encodes connexin 26 (Cx26), the most commonly mutated gene causing hereditary non-syndromic hearing loss. Cx26 is mainly expressed in supporting cells (SCs) and fibrocytes in the mammalian cochlea. Gene therapy is currently considered the most promising strategy for eradicating genetic diseases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Department of Systems Biology, Yonsei University, Seoul, 03722, Republic of Korea. Electronic address:
The root epidermis of Arabidopsis (Arabidopsis thaliana) consists of two distinct cell types: hair (H) cells and non-hair (N) cells, whose patterning is regulated by a network of genes. Among these, the WEREWOLF (WER) gene, encoding an R2R3 MYB transcription factor, acts as a master regulator by promoting the expression of key downstream genes, such as GLABRA2 and CAPRICE. However, the mechanisms controlling WER expression have remained largely unexplored.
View Article and Find Full Text PDFNat Commun
December 2024
The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.
View Article and Find Full Text PDFIran J Biotechnol
July 2024
Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
Objectives: This study investigated the impact of hypoxic preconditioning on the survival and oxidative stress tolerance of nestin-expressing hair follicle stem cells (hHFSCs) and SH-SY5Y neuroblastoma cells, two crucial cell types for central nervous system therapies. The study also examined the relative expression of three key genes, HIF1α, BDNF, and VEGF following hypoxic preconditioning.
Materials And Methods: hHFSCs were isolated from human hair follicles, characterized, and subjected to hypoxia for up to 72 hours.
Biomater Res
December 2024
Department of Molecular Science and Technology, Ajou University, Suwon 16499, South Korea.
Hair follicle cells reside within a complex extracellular matrix (ECM) environment in vivo, where physical and chemical cues regulate their behavior. The ECM is crucial for hair follicle development and regeneration, particularly through epithelial-mesenchymal interactions. Current in vitro models often fail to replicate this complexity, leading to inconsistencies in evaluating hair loss treatments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!