Decreased bone volume and strength with aging and enhanced risk of fractures are in part due to reduced number of bone-forming mesenchymal stem cells (MSCs) and cellular dysfunction. In a previous study, we found that osteogenic differentiation of the multipotent and omnipotent preosteoblasts are accompanied by the alterations of intracellular NAD metabolism in which nicotinamide phosphoribosyltransferase (Nampt) plays a regulatory role. The increased Nampt during osteoblast differentiation, the enzyme catalyzing NAD resynthesis from nicotinamide was noted. However, whether Nampt will also be able to affect osteogenic differentiation of primary bone marrow-derived mesenchymal stem cells (BM-MSCs), it is still uncertain. Here we report the role of Nampt in regulating osteoblast differentiation in primary mouse BM-MSCs. We found that Nampt expression was progressively elevated during BM-MSCs osteogenic differentiation. The Nampt inhibitor FK866 or knock-down of Nampt in BM-MSCs led to declined osteoblastogenesis, including attenuated ALP activity, diminished matrix mineralization and down-regulated osteoblast specific marker genes. In addition, declined osteoblastogenesis by Nampt deficiency or addition of FK866 was related to lower intracellular NAD concentration and decreased Sirt1 activity. The present findings demonstrate that osteogenic differentiation in MSCs can be modulated by intracellular NAD metabolism, in which Nampt may serve as an applicable marker for the osteoblast determination.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yexcr.2017.01.021DOI Listing

Publication Analysis

Top Keywords

osteogenic differentiation
16
osteoblast differentiation
12
mesenchymal stem
12
stem cells
12
intracellular nad
12
nampt
10
nicotinamide phosphoribosyltransferase
8
phosphoribosyltransferase nampt
8
nampt serve
8
marker osteoblast
8

Similar Publications

Objective: Osteoporosis is a systemic disease with high morbidity and significant adverse effects. Increasing evidence supports the close relationship between oxidative stress and osteoporosis, suggesting that treatment with antioxidants may be a viable approach. This study evaluated the antioxidant properties of dichotomitin (DH) and its potential protective effects against osteoporosis.

View Article and Find Full Text PDF

Lateral Meningocele Syndrome (LMS), a disorder associated with NOTCH3 pathogenic variants, presents with neurological, craniofacial and skeletal abnormalities. Mouse models of the disease exhibit osteopenia that is ameliorated by the administration of Notch3 antisense oligonucleotides (ASO) targeting either Notch3 or the Notch3 mutation. To determine the consequences of LMS pathogenic variants in human cells and whether they can be targeted by ASOs, induced pluripotent NCRM1 and NCRM5 stem (iPS) cells harboring a NOTCH36692-93insC insertion were created.

View Article and Find Full Text PDF

Effect of nanoparticulate CaCO on the biological properties of calcium silicate cement.

Sci Rep

January 2025

Department of Dental Biomaterials Science, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea.

This study aimed to evaluate the effects of nanoparticulate CaCO (NPCC) on the biological properties of calcium silicate-based cements (CSCs), including their cytotoxicity, in vitro osteogenic activity, and interactions with rat femur tissue. The average size of NPCC was 90.3±26.

View Article and Find Full Text PDF

Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.

View Article and Find Full Text PDF

Bone morphogenetic proteins are essential for bone regeneration/fracture healing but can also induce heterotopic ossification (HO). Understanding accessory factors modulating BMP signaling would provide both a means of enhancing BMP-dependent regeneration while preventing HO. This study focuses on the ability of the collagen receptor, discoidin domain receptor 2 (DDR2), to regulate BMP activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!