Removal of fumonisin B and B from model solutions and red wine using polymeric substances.

Food Chem

School of Agricultural Sciences, Universidad de Talca, 2 Norte 681, Talca, Chile; Fraunhofer Chile Research Foundation - Nanobiotechnology Division at Universidad de Talca, 2 Norte 681, Talca, Chile. Electronic address:

Published: June 2017

Fumonisins are a group of mycotoxins found in various foods whose consumption is known to be harmful for human health. In this study, we evaluated the ability of three polymers (Polyvinylpolypyrrolidone, PVPP; a resin of N-vinyl-2-pyrrolidinone with ethylene glycol dimethacrylate and triallyl isocyanurate, PVP-DEGMA-TAIC; and poly(acrylamide-co-ethylene glycol-dimethacrylate), PA-EGDMA) to remove fumonisin B (FB1) and fumonisin B (FB2) from model solutions and red wine. Various polymer concentrations (1, 5 and 10mgmL) and contact times (2, 8 and 24h) were tested, with all polymers exhibiting fumonisin removal capacities (monitored by LC-MS). The impact of all polymers on polyphenol removal was also assessed. PA-EGDMA showed to be the most promising polymer, removing 71% and 95% of FB, and FB, respectively, with only a 22.2% reduction in total phenolics.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.foodchem.2016.12.081DOI Listing

Publication Analysis

Top Keywords

model solutions
8
solutions red
8
red wine
8
removal fumonisin
4
fumonisin model
4
wine polymeric
4
polymeric substances
4
substances fumonisins
4
fumonisins group
4
group mycotoxins
4

Similar Publications

Probing Surface Reactions on Multicomponent Glass Using Reflection-Absorption Infrared Spectroscopy.

Langmuir

January 2025

Department of Chemical Engineering and Materials Research Institute, Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The chemical reactivity of glass surfaces is often studied with elemental analysis techniques, and although such characterization methods provide insights on compositional changes from exposure to specific chemical conditions, molecule-specific chemical reactions are not determined unambiguously. This study demonstrates the use of reflection-absorption infrared spectroscopy (RAIRS) to detect molecular species on alkali-free boroaluminosilicate and alkali aluminosilicate glasses, using acetic acid vapor as a model reactant to probe reaction sites at the surface with or without pretreatment by aqueous solutions of varied pH. With the assistance of the theoretical calculation of spectral changes based on refractive indices of bulk materials, it was possible to identify the molecular species being removed and produced at the glass surface.

View Article and Find Full Text PDF

This research highlights a sustainable approach for the design and synthesis of a magnetic nickel ferrite (NiFeO) catalyst reutilizing industrial waste, specifically iron ore tailing and Raney nickel catalyst processing waste, by simple co-precipitation method. Transforming waste materials into high-performance catalysts, this study aligns with the principles of a circular economy, addressing both environmental waste and pollution. Structural characterization by X-ray diffraction (XRD) and microscopic (FESEM and TEM) revealed the formation of well crystalline nano ferrite with NiFeO nanoparticles with cubic spinel structure.

View Article and Find Full Text PDF

The application of quantitative systems pharmacology (QSP) has enabled substantial progress and impact in many areas of therapeutic discovery and development. This new technology is increasingly accepted by industry, academia, and solution providers, and is enjoying greater interest from regulators. In this chapter, we summarize key aspects regarding how effective collaboration among institutions and disciplines can support the growth of QSP and expand its application domain.

View Article and Find Full Text PDF

Iodine staining with distance countdown improving the safety for reduction of adverse events: a randomized controlled trial.

Clin Transl Gastroenterol

January 2025

Department of Gastroenterology & Hepatology, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.

Background: Lugol's chromoendoscopy (LCE) is valuable, cost-effective, and widely used in early esophageal cancer (EEC) screening, yet it suffers from low compliance due to adverse events after LCE. In addition, the reflux of iodine during iodine staining in the upper esophagus brings the risk of bucking and aspiration. We introduced a new model called distance countdown (DC) aimed to reduce reflux during iodine staining in upper esophageal LCE.

View Article and Find Full Text PDF

Formation of Highly Negatively Charged Supported Lipid Bilayers on a Silica Surface: Effects of Ionic Strength and Osmotic Stress.

Langmuir

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Institute of New Concept Sensors and Molecular Materials, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.

Solid supported lipid bilayers (SLBs) serve as an excellent platform for biophysical studies. However, the formation of highly negatively charged SLBs on negatively charged surfaces remains a challenge due to electrostatic repulsion. Here, we study the effects of ionic strength and osmotic stress on the formation of highly negatively charged SLBs on the silica surface.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!