Regional Gene Expression of Inflammation and Oxidative Stress Responses Does Not Predict Neurodegeneration in Aging.

J Neuropathol Exp Neurol

From the Institute of Neuropathology, Service of Pathologic Anatomy, Bellvitge University Hospital (IL-G, IF); Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat (IL-G, CTC, IF); Faculty of Medicine and Health Sciences, University Rovira i Virgili University, Reus (CTC); Department of Pathology and Experimental Therapeutics, University of Barcelona, L'Hospitalet de Llobregat (IF); Institute of Neurosciences, University of Barcelona (IF); and CIBERNED (Biomedical Research Center Network for the Study of Neurodegenerative Diseases, Institute Carlos III, Spanish Ministry of Science and Innovation, Madrid, Spain (IF).

Published: February 2017

Brain aging is accompanied by increased oxidative stress and what has been termed "neuroinflammation," which might contribute to age-related neurodegenerative diseases. We analyzed expression in the transcription of innate inflammatory response genes in eleven representative regions including frontal, parietal, inferior temporal, cingulate, occipital, entorhinal cortex, caudate, putamen, thalamus, substantia nigra, and cerebellar vermis in aging human brains. We probed members of the complement system, colony stimulating factor receptors, toll-like receptors, and pro- and anti-inflammatory cytokines in the brains of subjects with no neurological disease and neurofibrillary tangles (mean age: 47.1  ±  5.7 years) and those with no neurological disease and neurofibrillary pathology stages I-II (mean age: 70.6  ±  6.3 years). Although the entorhinal and frontal cortex were most altered, gene regulation patterns did not match regions with increased vulnerability. Analysis of false discovery rate thresholds revealed no differences for any gene in any region between the 2 groups, including cases in which individual comparisons analyzed using Student t or nonparametric tests showed apparent differences between groups. Moreover, gene expression of major anti-oxidative stress responses did not match neuroinflammation in aging or increased regional susceptibility to major neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/nlw117DOI Listing

Publication Analysis

Top Keywords

gene expression
8
oxidative stress
8
stress responses
8
neurodegenerative diseases
8
neurological disease
8
disease neurofibrillary
8
regional gene
4
expression inflammation
4
inflammation oxidative
4
responses predict
4

Similar Publications

Salicylic acid mitigates the physiological and biochemistry toxicity of fungicide difenoconazole and reduces its accumulation in wheat (Triticum aestivum L.).

Plant Physiol Biochem

January 2025

Henan Engineering Research Center of Green Pesticide Creation & Intelligent Pesticide Residue Sensor Detection and School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan, 453003, China. Electronic address:

Continuous misuse of difenoconazole (DFZ) results in farmland contamination, posing risks to crops and human health. Salicylic acid (SA) has been shown to enhance plant resistance and reduce pesticide phytotoxicity and accumulation. However, whether SA effectively reduces DFZ phytotoxicity and accumulation and its underlying mechanisms remain poorly understood.

View Article and Find Full Text PDF

Salinization is a significant global issue causes irreversible damage to plants by reducing osmotic potential, inhibiting seed germination, and impeding water uptake. Seed germination, a crucial step towards the seedling stage is regulated by several hormones and genes, with the balance between abscisic acid and gibberellin being the key mechanism that either promotes or inhibits this process. Additionally, mucilage, a gelatinous substance, is known to provide protection against drought, herbivory, soil adhesion, and seed sinking.

View Article and Find Full Text PDF

Anti-correlation of KLRG1 and PD-1 expression in human tumor CD8 T cells.

Oncotarget

January 2025

Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.

Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target.

View Article and Find Full Text PDF

Economic losses in cattle farms are frequently associated with failed pregnancies. Some studies found that the transcriptomic profiles of blood and endometrial tissues in cattle with varying pregnancy outcomes display discrepancies even before artificial insemination (AI) or embryo transfer (ET). In the study, 330 samples from seven distinct sources and two tissue types were integrated and divided into two groups based on the ability to establish and maintain pregnancy after AI or ET: P (pregnant) and NP (nonpregnant).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!