Development of a Rat Clinical Frailty Index.

J Gerontol A Biol Sci Med Sci

Physiology and Biophysics Department.

Published: July 2017

AI Article Synopsis

  • Rats are commonly studied in aging research, and developing a frailty assessment tool specific to rats is important for these studies.
  • A clinical frailty index (FI) was created for rats, based on existing tools for mice, which quantifies health deficits across various measures.
  • The study found that older rats had increasing FI scores over time, and higher scores correlated with a lower chance of survival, highlighting the FI's usefulness in aging research.

Article Abstract

Rats are a commonly used model for aging studies, and a frailty assessment tool for rats would be of considerable value. There has been a recent focus on the development of preclinical models of frailty in mice. A mouse clinical frailty index (FI) was developed based on clinical frailty assessment tools. This FI measures the accumulation of clinically evident health-related deficits in mice. This paper aimed to develop a rat clinical FI. Male Fischer 344 rats were aged from 6 to 9 months (n = 12), and from 13 to 21 months (n = 41). A FI comprised of 27 health-related deficits was developed from a review of the literature and consultation with a veterinarian. Deficits were scored 0 if absent, 0.5 if mild, or 1 if severe. A FI score was determined for each rat every 3-4 months, and for the older group mortality was assessed up to 21 months. Mean FI scores significantly increased at each time point for the older rats. A high FI score measured at both 17 months of age and terminally was also associated with decreased probability of survival as assessed with Kaplan-Meier curves. The rat clinical FI has significant value for use in aging and interventional studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5458399PMC
http://dx.doi.org/10.1093/gerona/glw339DOI Listing

Publication Analysis

Top Keywords

rat clinical
12
clinical frailty
12
frailty assessment
8
health-related deficits
8
clinical
5
frailty
5
months
5
development rat
4
rats
4
frailty rats
4

Similar Publications

Background: Microsurgery demands an intensive period of skill acquisition due to its inherent complexity. The development and implementation of innovative training methods are essential for enhancing microsurgical outcomes. This study aimed to evaluate the impact of a simulation training program on the clinical results of fingertip replantation surgeries.

View Article and Find Full Text PDF

Neuro-reproductive toxicity and carcinogenicity of 1-bromopropane - studies for evidence-based preventive medicine (EBPM).

J Occup Health

January 2025

Department of Occupational and Environmental Health, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Japan.

Bromopropane was introduced commercially as an alternative to ozone-depleting and global warming solvents. The identification of 1-bromopropane neurotoxicity in animal experiments was followed by reports of human cases of 1-bromopropane toxicity. In humans, the most common clinical features of 1-bromopropane neurotoxicity are decreased sensation, weakness in extremities, and walking difficulties.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder characterized by cognitive decline. Despite extensive research, therapeutic options remain limited. Varenicline, an αβ nicotinic acetylcholine receptor agonist, shows promise in enhancing cognitive function.

View Article and Find Full Text PDF

Ischemia-reperfusion injury (IRI) is a common pathogenic situation that arises throughout all liver surgeries, including liver transplants. We aimed to compare the preventive effects of valsartan (VST) against valsartan + sacubitril (LCZ696) on hepatic injury caused by IRI. A total of thirty-six male Westar albino rats were split into six groups randomly: sham, IRI, VST + IRI, LCZ696 + IRI, VST, and LCZ696.

View Article and Find Full Text PDF

Modulation of placental angiogenesis by metformin in a rat model of gestational diabetes.

Histochem Cell Biol

January 2025

Medical Histology and Cell Biology Department, Faculty of Medicine, Mansoura University, Mansoura, 35516, Egypt.

Gestational diabetes mellitus (GDM) significantly disrupts placental structure and function, leading to complications such as intrauterine growth restriction (IUGR) and preeclampsia. This study aimed to investigate the effects of GDM on placental histology, angiogenesis, and oxidative stress, as well as evaluate metformin's protective role in mitigating these changes. A total of 60 pregnant Sprague-Dawley rats were divided into four groups: control, metformin-treated, GDM, and GDM with metformin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!