Motivation: Whole metagenome shotgun sequencing is a powerful approach for assaying the functional potential of microbial communities. We currently lack tools that efficiently and accurately align DNA reads against protein references, the technique necessary for constructing a functional profile. Here, we present PALADIN-a novel modification of the Burrows-Wheeler Aligner that provides accurate alignment, robust reporting capabilities and orders-of-magnitude improved efficiency by directly mapping in protein space.

Results: We compared the accuracy and efficiency of PALADIN against existing tools that employ nucleotide or protein alignment algorithms. Using simulated reads, PALADIN consistently outperformed the popular DNA read mappers BWA and NovoAlign in detected proteins, percentage of reads mapped and ontological similarity. We also compared PALADIN against four existing protein alignment tools: BLASTX, RAPSearch2, DIAMOND and Lambda, using empirically obtained reads. PALADIN yielded results seven times faster than the best performing alternative, DIAMOND and nearly 8000 times faster than BLASTX. PALADIN's accuracy was comparable to all tested solutions.

Availability And Implementation: PALADIN was implemented in C, and its source code and documentation are available at https://github.com/twestbrookunh/paladin.

Contact: anthonyw@wildcats.unh.edu.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5423455PMC
http://dx.doi.org/10.1093/bioinformatics/btx021DOI Listing

Publication Analysis

Top Keywords

protein alignment
12
metagenome shotgun
8
paladin existing
8
reads paladin
8
times faster
8
paladin
6
paladin protein
4
alignment
4
alignment functional
4
functional profiling
4

Similar Publications

Introduction: The aim of this study is to use observational methods to evaluate reliability of evidence generated by a study of the effect of glucagon-like peptide 1 receptor agonists (GLP-1RA) on chronic lower respiratory disease (CLRD) outcomes among Type-2 diabetes mellitus (T2DM) patients.

Research Design And Methods: We independently reproduced a study comparing effects of GLP-1RA versus dipeptidyl peptidase-4 inhibitors (DPP4-i) on CLRD outcomes among patients with T2DM and prior CLRD. We reproduced inputs and outputs using the original study data (national administrative claims) and evaluated the robustness of results in comparison to alternate design/analysis decisions.

View Article and Find Full Text PDF

Lithocarpus litseifolius is rich in the chalcones phloridzin and trilobatin, the biosynthesis pathways of which have not been fully demonstrated. Chalcone synthase(CHS) is the first key rate-limiting enzyme in the biosynthesis of flavonoids in plants. To explore the functions of CHS gene family in chalcone synthesis of L.

View Article and Find Full Text PDF

[Site-directed mutagenesis of ent-kaurane diterpenoid C-19 oxidase TwKO in Tripterygium wilfordii].

Zhongguo Zhong Yao Za Zhi

December 2024

National Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences Beijing 100700, China.

Tripterifordin and neotripterifordin are important ent-kaurane diterpenoids in the Chinese medicinal herb Tripterygium wilfordii, possessing significant anti-HIV(human immunodeficiency virus) activity. On the basis of elucidating the natural biosynthetic pathways of these compounds, heterologous production with microbial cell factories can help to alleviate the reliance on plant resources and provide abundant raw materials for sustainable production. TwKO is the first CYP450 enzyme involved in the biosynthesis of tripterifordin and neotripterifordin.

View Article and Find Full Text PDF

Detection of SARS-CoV-2 and a possible variant in shelter cats.

PLoS One

January 2025

Arizona Humane Society, Phoenix, Arizona, United States of America.

SARS-CoV-2 is the cause of mild to severe acute respiratory disease that led to significant loss of human lives worldwide between 2019 and 2022. The virus has been detected in various animals including cats and dogs making it a major public health concern and a One Health issue. In this study, conjunctival and pharyngeal swabs (n = 350) and serum samples (n = 350) were collected between July and December 2020 from cats that were housed in an animal shelter and tested for the infection of SARS-CoV-2 using real time reverse-transcription polymerase chain reaction (rRT-PCR) that targeted the N1 and N2 genes, and a SARS-CoV-2 surrogate virus neutralization Test (sVNT), respectively.

View Article and Find Full Text PDF

MMFuncPhos: A Multi-Modal Learning Framework for Identifying Functional Phosphorylation Sites and Their Regulatory Types.

Adv Sci (Weinh)

January 2025

Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.

Protein phosphorylation plays a crucial role in regulating a wide range of biological processes, and its dysregulation is strongly linked to various diseases. While many phosphorylation sites have been identified so far, their functionality and regulatory effects are largely unknown. Here, a deep learning model MMFuncPhos, based on a multi-modal deep learning framework, is developed to predict functional phosphorylation sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!