The increasing prevalence of methicillin-resistant Staphylococcus aureus has become a major public health threat. While lactobacilli were recently found useful in combating various pathogens, limited data exist on their therapeutic potential for S. aureus infections. The aim of this study was to determine whether Lactobacillus salivarius was able to produce bactericidal activities against S. aureus and to determine whether the inhibition was due to a generalized reduction in pH or due to secreted Lactobacillus product(s). We found an 8.6-log10 reduction of planktonic and a 6.3-log10 reduction of biofilm S. aureus. In contrast, the previously described anti-staphylococcal effects of L. fermentum only caused a 4.0-log10 reduction in planktonic S. aureus cells, with no effect on biofilm S. aureus cells. Killing of S. aureus was partially pH dependent, but independent of nutrient depletion. Cell-free supernatant that was pH neutralized and heat inactivated or proteinase K treated had significantly reduced killing of L. salivarius than with pH-neutralized supernatant alone. Proteomic analysis of the L. salivarius secretome identified a total of five secreted proteins including a LysM-containing peptidoglycan binding protein and a protein peptidase M23B. These proteins may represent potential novel anti-staphylococcal agents that could be effective against S. aureus biofilms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/femspd/ftx009DOI Listing

Publication Analysis

Top Keywords

aureus
9
lactobacillus salivarius
8
staphylococcus aureus
8
reduction planktonic
8
biofilm aureus
8
aureus cells
8
antimicrobial activity
4
lactobacillus
4
activity lactobacillus
4
salivarius
4

Similar Publications

Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.

View Article and Find Full Text PDF

Polyvinyl alcohol/chitosan hydrogel based on deep eutectic solvent for promoting methicillin-resistant Staphylococcus aureus-infected wound healing.

Int J Biol Macromol

January 2025

School of Veterinary Medicine, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu 225009, PR China. Electronic address:

Bacterial-infected wounds usually lead to slow wound healing due to increased inflammation, especially wounds infected by drug-resistant bacteria, which is a serious challenge in the biomedical field. Traditional antimicrobial strategies such as antibiotics lead to a significant increase in drug-resistant strains and have limited efficacy. Therefore, there is an urgent need to develop multifunctional dressings with excellent antibacterial activity and promotion of wound healing.

View Article and Find Full Text PDF

Bacterial infections impede skin wound healing, and antibacterial hydrogels have garnered significant attention in the field of wound care due to their combined therapeutic effects. In this study, an intelligent, responsive AC-Gel@Cur-Au hydrogel was developed using temperature-sensitive agarose and pH-responsive chitosan as the structural framework, infused with Gel@Cur and AuNR. The AC-Gel@Cur-Au hydrogels demonstrated excellent mechanical properties, swelling capacity, tissue adhesion, and biodegradability.

View Article and Find Full Text PDF

Expression and functional analysis of mouse chitinases without the ZZ domain of Staphylococcus aureus Protein A.

Int J Biol Macromol

January 2025

Division of Infectious Diseases and Immunology, Department of Microbiology, School of Medicine, Iwate Medical University, 1-1-1 Idaidori, Yahaba, Iwate 028-3694, Japan. Electronic address:

Chitinase plays a role in mammalian immune responses, particularly in the degradation of fungal cell walls. The aim of the present study was to express and characterize recombinant mouse chitotriosidase (Chit1) and acidic mammalian chitinase (AMCase) without the ZZ domain, a domain that may interfere with immunological analyses. We successfully expressed recombinant chitinases without the ZZ domain (Chit1-V5-His and AMCase-V5-His) as a soluble protein from an expression vector pET21a in the Escherichia coli Rosetta-gami B (DE3) strain.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!