Two winter wheat cultivars (the functional stay-green CN12 and non-stay-green CN19) were used to investigate the effects of ear-shading on grain yield and to elucidate the differential mechanisms of different cultivars. The photosynthetic parameters, chlorophyll fluorescence, antioxidant enzyme activities, and chlorophyll contents were measured 0, 15 and 30 days after heading (DAH) under both shaded and non-shaded conditions. The final grain-yield index was also measured. Shading had a smaller effect on the net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), stomatal conductance (Gs), maximal photochemical efficiency of PSII (Fv/Fm) and coefficient of non-photochemical fluorescence quenching (qN) but a greater effect on both superoxide dismutase (SOD) and catalase (CAT) activities in CN12 than it did in CN19. Shading slightly altered the timeframe of leaf senescence in CN12 and may have accelerated leaf senescence in CN19. Moreover, shading had only a small effect on the weight of grains per spike (WGS) in CN12 compared with CN19, mainly resulting from the number of grains per spike (NGS) rather than the 1000-grain weight (SGW). In conclusion, the flag leaves of functional stay-green wheat could serve as potential "buffers" and/or "compensators" for ear photosynthesis, which is actively regulated by the antioxidant enzyme system and prevents yield loss. Thus, a functional stay-green genotype could be more tolerant to environmental stress than a non-stay-green genotype.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291436PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0171589PLOS

Publication Analysis

Top Keywords

functional stay-green
12
antioxidant enzyme
8
cn19 shading
8
leaf senescence
8
grains spike
8
differential whole-ear
4
shading
4
whole-ear shading
4
shading heading
4
heading physiology
4

Similar Publications

Stay-green (SG) and stem reserve mobilization (SRM) are two significant mutually exclusive traits, which contributes to grain-filling during drought and heat stress in wheat. The current research was conducted in a genome-wide association study (GWAS) panel consisting of 278 wheat genotypes of advanced breeding lines to find the markers linked with SG and SRM traits and also to screen the superior genotypes. SG and SRM traits, viz.

View Article and Find Full Text PDF

Natural mutation in Stay-Green (OsSGR) confers enhanced resistance to rice sheath blight through elevating cytokinin content.

Plant Biotechnol J

December 2024

Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, China.

Article Synopsis
  • Sheath blight (ShB), caused by the fungus Rhizoctonia solani, is a serious problem for crops globally, and current rice varieties lack major resistance genes.
  • Researchers identified a rice mutant, sbr1, which shows improved resistance to ShB while retaining normal growth traits, though it has an undesirable stay-green characteristic linked to the disruption of the Stay-Green (OsSGR) gene.
  • The study found that manipulating cytokinin levels through the knockout of the OsCKX7 gene boosts ShB resistance without negatively affecting yield or causing the stay-green issue, offering new possibilities for developing resistant rice varieties.
View Article and Find Full Text PDF

Identification of a Soybean Volatile Attractive for Using Reverse Chemical Ecology Approach.

J Agric Food Chem

December 2024

Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education/College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China.

Article Synopsis
  • * This study analyzed the antennae transcriptomes of starved and non-starved adult bean bugs, identifying four odorant receptor genes, particularly RpedOR13, which responds strongly to the volatile compound 2-phenylethanol (2-PE).
  • * Further tests confirmed 2-PE as an attractant and emphasized the important role of RpedOR72b in detecting this compound, showcasing the use of reverse chemical ecology in understanding these sensory interactions.
View Article and Find Full Text PDF

The SUMO-conjugating enzyme OsSCE1a from wild rice regulates the functional stay-green trait in rice.

Plant Biotechnol J

November 2024

Frontiers Science Center for Molecular Design Breeding (MOE), National Center for Evaluation of Agricultural Wild Plants (Rice), Department of Plant Genetics and Breeding, China Agricultural University, Beijing, China.

The functional stay-green trait is a major goal of rice breeding. Here, we cloned OsSCE1a encoding SUMO-conjugating enzyme from Yuanjiang common wild rice, which simultaneously regulates the functional stay-green trait and growth duration. Low expression or knocking out OsSCE1a corresponded to increased chlorophyll content, photosynthetic competence, N use efficiency and a shortened growth period without affecting yield.

View Article and Find Full Text PDF

Yellowing is the first visually observable sign of plant leaf senescence. We found that Arabidopsis double knockout mutant for genes of NAD(H)-dependent glutamate dehydrogenase retains green color of the leaves (stay-green phenotype) during a dark-induced senescence, in contrast to wild-type plants, whose leaves turn yellow. When the plants are exposed to the dark more than four days, they demonstrate slower chlorophyll degradation than in the wild-type plants under the same conditions, as well as dysregulation of chlorophyll breakdown genes encoding chlorophyll reductase, Mg-dechelatase, pheophytinase and pheophorbide oxygenase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!