The relative impact of top-down control by herbivores and bottom-up control by environmental conditions on vegetation is a subject of debate in ecology. In this study, we hypothesize that top-down control by goose foraging and bottom-up control by sediment accretion on vegetation composition within an ecosystem can co-occur but operate at different spatial and temporal scales. We used a highly dynamic marsh system with a large population of the Greylag goose (Anser anser) to investigate the potential importance of spatial and temporal scales on these processes. At the local scale, Greylag geese grub for below-ground storage organs of the vegetation, thereby creating bare patches of a few square metres within the marsh vegetation. In our study, such activities by Greylag geese allowed them to exert top-down control by setting back vegetation succession. However, we found that the patches reverted back to the initial vegetation type within 12 years. At large spatial (i.e. several square kilometres) and temporal scales (i.e. decades), high rates of sediment accretion surpassing the rate of local sea-level rise were found to drive long-term vegetation succession and increased cover of several climax vegetation types. In summary, we conclude that the vegetation composition within this tidal marsh was primarily controlled by the bottom-up factor of sediment accretion, which operates at large spatial as well as temporal scales. Top-down control exerted by herbivores was found to be a secondary process and operated at much smaller spatial and temporal scales.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5291511 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0169960 | PLOS |
Sci Data
January 2025
Department of Earth and Environmental Engineering, Columbia University, New York, USA.
The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.
View Article and Find Full Text PDFCell Genom
January 2025
Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia. Electronic address:
Understanding the evolution of human traits is a fundamental yet challenging question. In a recent Cell Genomics article, Kun et al. integrate large-scale genomic and phenotypic data, including deep-learning-derived imaging phenotypes, with temporal annotations to estimate the timing of evolutionary changes that led to differences in traits between modern humans and primates or hominin ancestors.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:
Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.
View Article and Find Full Text PDFAm J Health Syst Pharm
January 2025
Veterans Health Care System of the Ozarks, Fayetteville, AR, USA.
Disclaimer: In an effort to expedite the publication of articles, AJHP is posting manuscripts online as soon as possible after acceptance. Accepted manuscripts have been peer-reviewed and copyedited, but are posted online before technical formatting and author proofing. These manuscripts are not the final version of record and will be replaced with the final article (formatted per AJHP style and proofed by the authors) at a later time.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Information Science and Technology, Southwest Jiaotong University, Chengdu 611756, China.
Real-time and accurate traffic forecasting aids in traffic planning and design and helps to alleviate congestion. Addressing the negative impacts of partial data loss in traffic forecasting, and the challenge of simultaneously capturing short-term fluctuations and long-term trends, this paper presents a traffic forecasting model, D-MGDCN-CLSTM, based on Multi-Graph Gated Dilated Convolution and Conv-LSTM. The model uses the DTWN algorithm to fill in missing data.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!