A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Ultra low-loss hybrid core porous fiber for broadband applications. | LitMetric

In this paper, we present the design and analysis of a novel hybrid porous core octagonal lattice photonic crystal fiber for terahertz (THz) wave guidance. The numerical analysis is performed using a full-vector finite element method (FEM) that shows that 80% of bulk absorption material loss of cyclic olefin copolymer (COC), commercially known as TOPAS can be reduced at a core diameter of 350 μm. The obtained effective material loss (EML) is as low as 0.04  cm at an operating frequency of 1 THz with a core porosity of 81%. Moreover, the proposed photonic crystal fiber also exhibits comparatively higher core power fraction, lower confinement loss, higher effective mode area, and an ultra-flattened dispersion profile with single mode propagation. This fiber can be readily fabricated using capillary stacking and sol-gel techniques, and it can be used for broadband terahertz applications.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.001232DOI Listing

Publication Analysis

Top Keywords

photonic crystal
8
crystal fiber
8
material loss
8
core
5
ultra low-loss
4
low-loss hybrid
4
hybrid core
4
core porous
4
fiber
4
porous fiber
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!