The optimization of components that rely on spatially dithered distributions of transparent or opaque pixels and an imaging system with far-field filtering for transmission control is demonstrated. The binary-pixel distribution can be iteratively optimized to lower an error function that takes into account the design transmission and the characteristics of the required far-field filter. Simulations using a design transmission chosen in the context of high-energy lasers show that the beam-fluence modulation at an image plane can be reduced by a factor of 2, leading to performance similar to using a non-optimized spatial-dithering algorithm with pixels of size reduced by a factor of 2 without the additional fabrication complexity or cost. The optimization process preserves the pixel distribution statistical properties. Analysis shows that the optimized pixel distribution starting from a high-noise distribution defined by a random-draw algorithm should be more resilient to fabrication errors than the optimized pixel distributions starting from a low-noise, error-diffusion algorithm, while leading to similar beam-shaping performance. This is confirmed by experimental results obtained with various pixel distributions and induced fabrication errors.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.000806DOI Listing

Publication Analysis

Top Keywords

design transmission
8
reduced factor
8
pixel distribution
8
optimized pixel
8
fabrication errors
8
pixel distributions
8
model-based optimization
4
optimization near-field
4
near-field binary-pixelated
4
binary-pixelated beam
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!