Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The grain sizes and their influence on the roughness of an HfO single layer prepared with ion-assisted deposition were investigated. Three methods, x ray diffractometry, atomic force microscopy, and the k-correlated power spectral density function model, were used to obtain the grain sizes in two HfO single layers with 16 and 20 nm thicknesses. X ray diffractometry showed that the grain sizes were about 7 and 9 nm, respectively, whereas the other two methods demonstrated that the grain sizes were about 14 and 16 nm. It was thought that x ray diffractometry underestimated the grain size due to micro strain or a shallow penetration depth. The grains in an HfO single layer lead to a rough surface, which had a significant bulge at the middle-high frequency range in a power spectral density function curve. The coating intrinsic roughness of the HfO single layer was separated from the substrate roughness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.56.000C24 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!