In digital speckle pattern interferometry, fringeless speckle pattern interferograms are obtained when the object field deformation is insufficient to produce local phase variations higher than 2π. Therefore, the use of the well-known phase recovery algorithms based on fringe processing is not adequate. In this work, distinct algorithms based on the application of a straightforward arccosine function to a filtered interferogram and the correlation of intensity images and implicit smoothing splines are proposed, analyzed, and compared for the fast inspection of nanometric displacement fields, avoiding the acquisition of several images. In addition, three different methods for the normalization of fringeless speckle pattern interferograms are proposed. The Structural Similarity Index is used to assess the performance of the tested methods by means of numerical simulations under different illuminations, signal-to-noise ratios, phase excursions, and mean speckle size conditions. The analysis shows that the phase recovered by the methods based on the arccosine function and correlation are appropriate for a fast inspection solution. The implicit smoothing spline outperforms other methods in almost all conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.000365DOI Listing

Publication Analysis

Top Keywords

speckle pattern
16
fringeless speckle
12
pattern interferometry
8
pattern interferograms
8
algorithms based
8
arccosine function
8
implicit smoothing
8
fast inspection
8
methods
5
speckle
5

Similar Publications

This study presents a cutting-edge imaging technique for special unmanned vehicles (UAVs) designed to enhance tunnel inspection capabilities. This technique integrates ghost imaging inspired by the human visual system with lateral inhibition and variable resolution to improve environmental perception in challenging conditions, such as poor lighting and dust. By emulating the high-resolution foveal vision of the human eye, this method significantly enhances the efficiency and quality of image reconstruction for fine targets within the region of interest (ROI).

View Article and Find Full Text PDF

Topological functional network analysis of cortical blood flow in hyperacute ischemic rats.

Brain Struct Funct

December 2024

The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.

Acute cerebral ischemia alters brain network connectivity, leading to notable increases in both anatomical and functional connectivity while observing a reduction in metabolic connectivity. However, alterations of the cerebral blood flow (CBF) based functional connectivity remain unclear. We collected continuous CBF images using laser speckle contrast imaging (LSCI) technology to monitor ischemic occlusion-reperfusion progression through occlusion of the left carotid artery.

View Article and Find Full Text PDF

Supergrowth occurs when the local amplitude growth rate of a wave is greater than that predicted by the band limit. While generating supergrowth on demand requires precise source modulation, we demonstrate that supergrowth occurs naturally in a sum of random plane waves. We measure the supergrowing fractional area of transverse, monochromatic, fully developed speckle patterns.

View Article and Find Full Text PDF

We introduce the reflection intensity correlation scan (RICO-scan), a nonlinear (NL) optical technique designed to characterize opaque and scattering media, where traditional transmittance methods fail. By analyzing variations in the intensity correlation functions of speckle patterns generated from backscattered light, the RICO-scan was applied to an unpolished silicon surface and silicon powders, providing information on the intensity dependence of the complex refractive index. Numerical simulations based on Fresnel equations and speckle propagation corroborated the experimental results, demonstrating RICO-scan's robustness and versatility.

View Article and Find Full Text PDF

Association between antinuclear antibodies and pregnancy prognosis in recurrent pregnancy loss patients.

Hum Reprod

December 2024

Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Aichi, Japan.

Study Question: Can antinuclear antibodies (ANA) affect the subsequent live birth rate (LBR) in patients with unexplained recurrent pregnancy loss (RPL) in the absence of antiphospholipid antibodies (aPL)?

Summary Answer: Women with unexplained RPL have a high probability of live birth following a positive pregnancy test (>70%), being similar between those with positive and negative ANA testing, regardless of the cut-off value.

What Is Known Already: The RPL guidelines of the ESHRE state that 'ANA testing can be considered for explanatory purposes'. However, there have been a limited number of studies on this issue and sample sizes have been small, and the impact of ANA on the pregnancy prognosis is unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!