In a high power fiber amplifier, a frequency-chirped seed interrupts the coherent interaction between the laser and Stokes waves, raising the threshold for stimulated Brillouin scattering (SBS). Moving the external mirror of a vertical cavity surface-emitting diode laser 0.2 μm in 10 μs can yield a frequency chirp of 5×10  Hz/s at a nearly constant output power. Opto-electronic feedback loops can linearize the chirp, and stabilize the output power. The linear variation of phase with time allows multiple amplifiers to be coherently combined using a frequency shifter to compensate for static and dynamic path length differences. The seed bandwidth, as seen by the counter-propagating SBS, also increases linearly with fiber length, resulting in a nearly-length-independent SBS threshold. Experimental results at the 1.6 kW level with a 19 m delivery fiber are presented. A numerical simulation is also presented.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.56.00B116DOI Listing

Publication Analysis

Top Keywords

fiber amplifier
8
stimulated brillouin
8
brillouin scattering
8
output power
8
16  kw fiber
4
amplifier chirped
4
chirped seed
4
seed amplification
4
amplification stimulated
4
scattering suppression
4

Similar Publications

Increasing microplastic concentrations have nonlinear impacts on the physiology of reef-building corals.

Sci Total Environ

January 2025

Department of Animal Ecology & Systematics, Justus Liebig University, Giessen, Germany; Hawai'i Institute of Marine Biology, University of Hawai'i at Mānoa, Kāne'ohe, HI, USA.

The pollution of marine environments with plastics, particularly microplastic (MP, i.e., plastic particles <5 mm), is a major threat to marine biota, including corals.

View Article and Find Full Text PDF

In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.

View Article and Find Full Text PDF

Space division multiplexing (SDM) with Hermite Gaussian (HG) modes, for instance, can significantly boost the transmission link capacity. However, SDM is not suitable in existing single mode fiber networks, and in long-distance wireless, microwave, THz or optical links, the far-field beam distribution may present a problem. Recently it has been demonstrated, that time domain HG modes can be employed to enhance the link capacity.

View Article and Find Full Text PDF
Article Synopsis
  • High-power tunable lasers are highly sought after for their applications in telecom, ranging, and molecular sensing, but integrated photonics has struggled with power due to size limitations.
  • The introduction of large-mode-area (LMA) fibers in the late 90s significantly improved the power capability of fiber systems by increasing the optical mode area.
  • This study demonstrates a silicon photonics-based LMA power amplifier that achieves an output power of 1.8W over a 60nm tunability range, indicating a potential advancement in integrated lasers for high-power applications that can compete with traditional bench systems.
View Article and Find Full Text PDF

Metal batteries have captured significant attention for high-energy applications, owing to their superior theoretical energy densities. However, their practical viability is impeded by severe dendrite formation and poor cycling stability. To alleviate these issues, a 3D-structured bimetallic-MoTiCT based fiber electrode was fabricated in this study and analyzed experimentally and computationally.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!