Purpose Of Review: Transcriptional regulators provide the molecular and biochemical basis for the cell specific properties and characteristics that follow from their central role in establishing tissue-restricted expression. Precise and sequential control of terminal cell divisions, nuclear condensation, and enucleation are defining characteristics within erythropoietic differentiation. This review is focused on KLF1, a central global regulator of this process.
Recent Findings: Studies in the past year have brought a number of proteins that are targets of KLF1 regulation into focus with respect to their roles in terminal erythroid differentiation. Many of these are involved in fine control of the cell cycle at both early (E2F2, Cyclin A2) and later (p18, p27, p19) stages of differentiation, or are directly involved in enucleation (p18, p27). Dramatic biophysical changes controlled at the nuclear lamin by caspase 3 enable histone release and nuclear condensation, whereas dematin association with structural proteins alters the timing of enucleation. Conditional ablation of mDia2 has established its role in late stage cell cycle and enucleation.
Summary: Transcription factors such as KLF1, along with epigenetic modifiers, play crucial roles in establishing the proper onset and progression of terminal differentiation events. Studies from the past year show a remarkable multifaceted convergence on cell cycle control, and establish that the orthochromatic erythroblast stage is a critical nodal point for many of the effects on enucleation. These studies are relevant to understanding the underlying causes of anemia and hematologic disease where defective enucleation predicts a poor clinical outcome.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5523457 | PMC |
http://dx.doi.org/10.1097/MOH.0000000000000327 | DOI Listing |
Mol Med
January 2025
Department of Urology, The Fifth Affiliated Hospital of Southern Medical University, Guangzhou, 510920, Guangdong, People's Republic of China.
Prostate cancer (PCa) is a highly common type of malignancy and affects millions of men in the world since it is easy to recur or emerge therapy resistance. Therefore, it is urgent to find novel treatments for PCa patients. In the current study, we found that tegaserod maleate (TM), an FDA-approved agent, inhibited proliferation, colony formation, migration as well as invasion, caused the arrest of the cell cycle, and promoted apoptosis of PCa cells in vitro.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
Background: Due to sexual dimorphism in growth of penaeid shrimp, all-female cultivation is desirable for the aquaculture industry. 17β-estradiol (E2) has the potential to induce the male-to-female sex reversal of decapod species. However, the mechanisms behind it remain poorly understood.
View Article and Find Full Text PDFSci Rep
January 2025
International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang, China.
To meet the requirements of the biopharmaceutical industry, improving the yield of recombination therapeutic protein (RTP) from Chinese hamster ovary (CHO) cells is necessary. The human cytomegalovirus (CMV) promoter is widely used for RTP expression in CHO cells. To further improve RTP production, we truncated the human CMV intron and further evaluated the effect of four synthetic introns, including ctEF-1α first, EF-1α first, chimeric, and β-globin introns combined with the CMV promoter on recombinant expression levels in transient and stably recombinant CHO cells.
View Article and Find Full Text PDFOncogenesis
January 2025
Department of Hematology, The Second Affiliated Hospital of Soochow University, Suzhou, China.
Diffuse large B-cell lymphoma (DLBCL) is characterized by its aggressive nature and resistance to standard chemotherapy, necessitating the development of new therapeutic approaches. The emergence of natural products and their derivatives has notably influenced cancer treatment, making morusinol, a medicine-derived monomer, a promising candidate. Here, we showed that morusinol exerted antitumor effects on DLBCL in vitro by inducing apoptosis and cell cycle arrest.
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Cellular Architecture Studies, Division of Shionogi Global Infectious Diseases Division, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan.
The rapid intraerythrocytic replication of Plasmodium falciparum, a deadly species of malaria parasite, requires a quick but constant supply of phospholipids to support marked cell membrane expansion. In the malarial parasite, many enzymes functioning in phospholipid synthesis pathway have not been identified or characterized. Here, we identify P.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!