Holography of the Dirac Fluid in Graphene with Two Currents.

Phys Rev Lett

Department of Physics, Hanyang University, Seoul 133-791, Korea.

Published: January 2017

AI Article Synopsis

  • Recent experiments show graphene exhibits strong coupling, violating the Wiedemann-Franz law significantly near the charge neutral point.
  • A holographic model describing a strongly coupled plasma includes two distinct U(1) currents, leading to better alignment with experimental data than models with a single current.
  • The ability to incorporate two currents improves the understanding of transport coefficients and suggests reasons for the existence of these two currents in graphene.

Article Abstract

Recent experiments have uncovered evidence of the strongly coupled nature of graphene: the Wiedemann-Franz law is violated by up to a factor of 20 near the charge neutral point. We describe this strongly coupled plasma by a holographic model in which there are two distinct conserved U(1) currents. We find that our analytic results for the transport coefficients for the two current model have a significantly improved match to the density dependence of the experimental data than the models with only one current. The additive structure in the transport coefficients plays an important role. We also suggest the origin of the two currents.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.118.036601DOI Listing

Publication Analysis

Top Keywords

transport coefficients
8
holography dirac
4
dirac fluid
4
fluid graphene
4
graphene currents
4
currents experiments
4
experiments uncovered
4
uncovered evidence
4
evidence coupled
4
coupled nature
4

Similar Publications

The present article deals with the modulation of oscillatory electroosmotic flow (EOF) and solute dispersion across a nanochannel filled with an electrolyte solution surrounded by a layer of a dielectric liquid. The dielectric permittivity of the liquid layer adjacent to supporting rigid walls is taken to be lower than that of the electrolyte solution. Besides, the aforesaid liquid layer may bear additional mobile charges, , free lipid molecules, charged surfactant molecules , which in turn lead to a nonzero charge along the liquid-liquid interface.

View Article and Find Full Text PDF

Extensive research on ultrashort laser-induced melting of noble metals like Au, Ag and Cu is available. However, studies on laser energy deposition and thermal damage of their alloys, which are currently attracting interest for energy harvesting and storage devices, are limited. This study investigates the melting damage threshold (DT) of three intermetallic alloys of Au and Cu (AuCu, AuCu and AuCu) subjected to single-pulse femtosecond laser irradiation, comparing them with their constituent metals.

View Article and Find Full Text PDF

The thermodynamic properties of frozen soil depend on its temperature state and ice content. Additionally, the permeability coefficient significantly affects both the temperature distribution and water movement. In this study, the dynamic variation of soil permeability coefficient with temperature is considered, the permeability coefficient is defined as a piecewise function with temperature as independent variable, and the hydrothermal coupling equation is established.

View Article and Find Full Text PDF

To investigate the therapeutic effect of Fuzheng Tongluo Granules on idiopathic pulmonary fibrosis(IPF) and its mechanism. Seventy-two SD rats were randomly divided into the control group, model group, pirfenidone group(162 mg·kg~(-1)), and low-, medium-and high-dose of Fuzheng Tongluo Granules groups(2.63, 5.

View Article and Find Full Text PDF

Unraveling the Meaning of Effective Uptake Coefficients in Multiphase and Aerosol Chemistry.

Acc Chem Res

January 2025

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.

ConspectusReactions of gas phase molecules with surfaces play key roles in atmospheric and environmental chemistry. Reactive uptake coefficients (γ), the fraction of gas-surface collisions that yield a reaction, are used to quantify the kinetics in these heterogeneous and multiphase systems. Unlike rate coefficients for homogeneous gas- or liquid-phase reactions, uptake coefficients are system- and observation-dependent quantities that depend upon a multitude of underlying elementary steps.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!