In this study, magnetic graphene oxide (MGO) nanomaterials were synthesized based on covalent binding of amino Fe3O4 nanoparticles onto the graphene oxide (GO), and the prepared MGO was successfully applied as support for the immobilization of laccase. The MGO-laccase was characterized by transmission electron microscopy (TEM) and a vibrating sample magnetometer (VSM). Compared with free laccase, the MGO-laccase exhibited better pH and thermal stabilities. The optimum pH and temperature were confirmed as pH 3.0 and 35 °C. Moreover, the MGO-laccase exhibited sufficient magnetic response and satisfied reusability after being retained by magnetic separation. The MGO-laccase maintained 59.8% activity after ten uses. MGO-laccase were finally utilized in the decolorization of dye solutions and the decolorization rate of crystal violet (CV), malachite green (MG), and brilliant green (BG) reached 94.7% of CV, 95.6% of MG, and 91.4% of BG respectively. The experimental results indicated the MGO-laccase nanomaterials had a good catalysis ability to decolorize dyes in aqueous solution. Compared with the free enzyme, the employment of MGO as enzyme immobilization support could efficiently enhance the availability and facilitate the application of laccase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6155931 | PMC |
http://dx.doi.org/10.3390/molecules22020221 | DOI Listing |
Int J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.
View Article and Find Full Text PDFPharmaceutics
January 2025
Research Centre for Life Science and Healthcare, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute (CBI), University of Nottingham Ningbo China, Ningbo 315000, China.
Malignant growth is expected to surpass other significant causes of death as one of the top reasons for dismalness and mortality worldwide. According to a World Health Organization (WHO) study, this illness causes approximately between 9 and 10 million instances of deaths annually. Chemotherapy, radiation, and surgery are the three main methods of treating cancer.
View Article and Find Full Text PDFACS Nano
January 2025
The Institute of Scientific and Industrial Research (ISIR-SANKEN), Osaka University, Osaka 567-0047, Japan.
The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.
View Article and Find Full Text PDFSe Pu
February 2025
College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
Trace contaminants are toxic and their widespread presence in the environment potentially threatens human health. The levels of these pollutants are often difficult to determine directly using instruments owing to the complexities of environment matrices. Hence, pretreatment steps, such as sample purification and concentration, are key along with various processes that enhance the accuracy and sensitivity of the detection method.
View Article and Find Full Text PDFNature
January 2025
Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia, Canada.
In a dilute two-dimensional electron gas, Coulomb interactions can stabilize the formation of a Wigner crystal. Although Wigner crystals are topologically trivial, it has been predicted that electrons in a partially filled band can break continuous translational symmetry and time-reversal symmetry spontaneously, resulting in a type of topological electron crystal known as an anomalous Hall crystal. Here we report signatures of a generalized version of the anomalous Hall crystal in twisted bilayer-trilayer graphene, whose formation is driven by the moiré potential.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!