The apolipoprotein E (APOE) gene has been consistently shown to modulate the risk of Alzheimer's disease (AD). Here, using an AD and normal aging dataset primarily consisting of three AD multi-center studies (n = 1,781), we compared the effect of APOE and amyloid-β (Aβ) on baseline hippocampal volumes in AD patients, mild cognitive impairment (MCI) subjects, and healthy controls. A large sample of healthy adolescents (n = 1,387) was also used to compared hippocampal volumes between APOE groups. Subjects had undergone a magnetic resonance imaging (MRI) scan and APOE genotyping. Hippocampal volumes were processed using FreeSurfer. In the AD and normal aging dataset, hippocampal comparisons were performed in each APOE group and in ɛ4 carriers with positron emission tomography Aβ who were dichotomized (Aβ+/Aβ-) using previous cut-offs. We found a linear reduction in hippocampal volumes with ɛ4 carriers possessing the smallest volumes, ɛ3 carriers possessing intermediate volumes, and ɛ2 carriers possessing the largest volumes. Moreover, AD and MCI ɛ4 carriers possessed the smallest hippocampal volumes and control ɛ2 carriers possessed the largest hippocampal volumes. Subjects with both APOE ɛ4 and Aβ+ had the lowest hippocampal volumes when compared to Aβ- ɛ4 carriers, suggesting a synergistic relationship between APOE ɛ4 and Aβ. However, we found no hippocampal volume differences between APOE groups in healthy 14-year-old adolescents. Our findings suggest that the strongest neuroanatomic effect of APOE ɛ4 on the hippocampus is observed in AD and groups most at risk of developing the disease, whereas hippocampi of old and young healthy individuals remain unaffected.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5302035PMC
http://dx.doi.org/10.3233/JAD-161097DOI Listing

Publication Analysis

Top Keywords

hippocampal volumes
28
apoe ɛ4
16
ɛ4 carriers
16
carriers possessing
12
apoe
10
volumes
10
hippocampal
9
ɛ4
8
alzheimer's disease
8
normal aging
8

Similar Publications

Influence of lung function on macro- and micro-structural brain changes in mid- and late-life.

Int J Surg

January 2025

Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.

Introduction: Lung function has been associated with cognitive decline and dementia, but the extent to which lung function impacts brain structural changes remains unclear. We aimed to investigate the association of lung function with structural macro- and micro-brain changes across mid- and late-life.

Methods: The study included a total of 37 164 neurologic disorder-free participants aged 40-70 years from the UK Biobank, who underwent brain MRI scans 9 years after baseline.

View Article and Find Full Text PDF

Neurodegeneration is presumed to be the pathological process measure most proximal to clinical symptom onset in Alzheimer Disease (AD). Structural MRI is routinely collected in research and clinical trial settings. Several quantitative MRI-based measures of atrophy have been proposed, but their low correspondence with each other has been previously documented.

View Article and Find Full Text PDF

Alterations in the kynurenine pathway, and in particular the balance of neuroprotective and neurotoxic metabolites, have been implicated in the pathophysiology of Major Depressive Disorder (MDD) and antidepressant treatment response. In this study, we examined the relationship between changes in kynurenine pathway activity (Kynurenine/Tryptophan ratio), focusing on the balance of neuroprotective-to neurotoxic metabolites (Kynurenic Acid/Quinolinic Acid and Kynurenic Acid/3-Hydroxykynurenine ratios), and response to 8 weeks of selective serotonin reuptake inhibitor (SSRI) treatment, including early changes four weeks after SSRI initiation. Additionally, we examined relationships between kynurenine metabolite ratios and three promising biomarkers of depression and antidepressant response: amygdala/hippocampal volume, and glutamate metabolites in the anterior cingulate cortex.

View Article and Find Full Text PDF

Background: Hippocampal volume increases throughout early development and is an important indicator of cognitive abilities and mental health. However, hippocampal development is highly vulnerable to exposures during development, as seen by smaller hippocampal volume and differential epigenetic programming in genes implicated in mental health. However, few studies have investigated hippocampal volume in relation to the peripheral epigenome across development, and even less is known about potential genetic moderators.

View Article and Find Full Text PDF

Background: Degeneration of the basal forebrain cholinergic system is a hallmark feature shared by Alzheimer's disease (AD) and Lewy body disease (LBD) whereas hippocampus atrophy is more specifically related to AD. We aimed to investigate the relationship between basal forebrain and hippocampus atrophy, cognitive decline, and neuropathology in a large autopsy sample.

Methods: Data were obtained from the National Alzheimer's Coordinating Center (NACC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!