AI Article Synopsis

Article Abstract

Mycobacterium avium subsp. hominissuis (MAH) is the major causative agent of nontuberculous mycobacteriosis, the representative case of environment-related infectious diseases the incidence of which is increasing in industrialized countries. MAH is found in biofilm in drinking water distribution system and residential environments. We investigated the effect of gaseous and nutritional conditions, and the role of glycopeptidolipids (GPLs) on biofilm-like pellicle formation in MAH. Pellicle formation was observed under 5% oxygen in Middlebrook 7H9 broth containing 0.2% glycerol and 10% albumin-dextrose-catalase enrichment but not under normoxia or in nutrient-poor media. An analysis of 17 environmental isolates revealed that hypoxia (5% oxygen) preferentially enhanced pellicle formation both in plastic plates and in glass tubes, compared with hypercapnia (5% carbon dioxide). Wild-type strains (WT) developed much thicker pellicles than GPL-deficient rough mutants (RM). WT bacterial cells distributed randomly and individually in contrast to that RM cells positioned linearly in a definite order. Exogenous supplementation of GPLs thickened the pellicles of RM, resulting in a similar morphological pattern to WT. These data suggest a significant implication of eutrophication and hypoxia in biofilm-like pellicle formation, and a functional role of GPLs on development of pellicles in MAH.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5290538PMC
http://dx.doi.org/10.1038/srep41775DOI Listing

Publication Analysis

Top Keywords

pellicle formation
16
mycobacterium avium
8
avium subsp
8
subsp hominissuis
8
biofilm-like pellicle
8
formation
5
effects nutritional
4
nutritional ambient
4
ambient oxygen
4
oxygen condition
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!