Background: Most of hydrophilic and hydrophobic residues are thought to be exposed and buried in proteins, respectively. In contrast to the majority of the existing studies on protein folding characteristics using protein structures, in this study, our aim was to design predictors for estimating relative solvent accessibility (RSA) of amino acid residues to discover protein folding characteristics from sequences.
Methods: The proposed 20 real-value RSA predictors were designed on the basis of the support vector regression method with a set of informative physicochemical properties (PCPs) obtained by means of an optimal feature selection algorithm. Then, molecular dynamics simulations were performed for validating the knowledge discovered by analysis of the selected PCPs.
Results: The RSA predictors had the mean absolute error of 14.11% and a correlation coefficient of 0.69, better than the existing predictors. The hydrophilic-residue predictors preferred PCPs of buried amino acid residues to PCPs of exposed ones as prediction features. A hydrophobic spine composed of exposed hydrophobic residues of an α-helix was discovered by analyzing the PCPs of RSA predictors corresponding to hydrophobic residues. For example, the results of a molecular dynamics simulation of wild-type sequences and their mutants showed that proteins 1MOF and 2WRP_H16I (Protein Data Bank IDs), which have a perfectly hydrophobic spine, have more stable structures than 1MOF_I54D and 2WRP do (which do not have a perfectly hydrophobic spine).
Conclusions: We identified informative PCPs to design high-performance RSA predictors and to analyze these PCPs for identification of novel protein folding characteristics. A hydrophobic spine in a protein can help to stabilize exposed α-helices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5259910 | PMC |
http://dx.doi.org/10.1186/s12859-016-1368-z | DOI Listing |
Advances in solid-state nuclear magnetic resonance (ssNMR) spectroscopy and cryogenic electron microscopy (cryoEM) have revealed the polymorphic nature of the amyloid state of proteins. Given the association of amyloid with protein misfolding disorders, it is important to understand the principles underlying this polymorphism. To address this problem, we combined computational tools to predict the specific regions of the sequence forming the β-spine of amyloid fibrils with the availability of 30, 83 and 24 amyloid structures deposited in the Protein Data Bank (PDB) and Amyloid Atlas (AA) for the amyloid β (Aβ) peptide, α-synuclein (αS), and the 4R isoforms of tau, associated with Alzheimer's disease, Parkinson's disease, and various tauopathies, respectively.
View Article and Find Full Text PDFElife
December 2024
Department of Pharmacology, University of California, San Diego, San Diego, United States.
Although the αC-β4 loop is a stable feature of all protein kinases, the importance of this motif as a conserved element of secondary structure, as well as its links to the hydrophobic architecture of the kinase core, has been underappreciated. We first review the motif and then describe how it is linked to the hydrophobic spine architecture of the kinase core, which we first discovered using a computational tool, local spatial Pattern (LSP) alignment. Based on NMR predictions that a mutation in this motif abolishes the synergistic high-affinity binding of ATP and a pseudo substrate inhibitor, we used LSP to interrogate the F100A mutant.
View Article and Find Full Text PDFSoft Matter
December 2024
Multidisciplinary Centre for Advanced Materials, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, 333 Longteng Rd., Shanghai 201620, P. R. China.
Drug Deliv
December 2024
Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands.
Intradiscal drug delivery is a promising strategy for treating intervertebral disk degeneration (IVDD). Local degenerative processes and intrinsically low fluid exchange are likely to influence drug retention. Understanding their connection will enable the optimization of IVDD therapeutics.
View Article and Find Full Text PDFMater Horiz
December 2024
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518055, P. R. China.
Conformal and body-adaptive electronics have revolutionized the way we interact with technology, ushering in a new era of wearable devices that can seamlessly integrate with our daily lives. However, the inherent mismatch between artificially synthesized materials and biological tissues (caused by irregular skin fold, skin hair, sweat, and skin grease) needs to be addressed, which can be realized using body-adaptive electronics by rational design of their surface adhesive and wettability properties. Over the past few decades, various approaches have been developed to enhance the conformability and adaptability of bioelectronics by (i) increasing flexibility and reducing device thickness, (ii) improving the adhesion and wettability between bioelectronics and biological interfaces, and (iii) refining the integration process with biological systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!